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Source-Free Object Detection With
Detection Transformer
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Abstract—Source-Free Object Detection (SFOD) enables
knowledge transfer from a source domain to an unsupervised
target domain for object detection without access to source
data. Most existing SFOD approaches are either confined to
conventional object detection (OD) models like Faster R-CNN
or designed as general solutions without tailored adaptations
for novel OD architectures, especially Detection Transformer
(DETR). In this paper, we introduce Feature Reweighting
ANd Contrastive Learning NetworK (FRANCK), a novel SFOD
framework specifically designed to perform query-centric fea-
ture enhancement for DETRs. FRANCK comprises four key
components: 1) an Objectness Score-based Sample Reweighting
(OSSR) module that computes attention-based objectness scores
on multi-scale encoder feature maps, reweighting the detection
loss to emphasize less-recognized regions; 2) a Contrastive
Learning with Matching-based Memory Bank (CMMB) module
that integrates multi-level features into memory banks, enhanc-
ing class-wise contrastive learning; 3) an Uncertainty-weighted
Query-fused Feature Distillation (UQFD) module that improves
feature distillation through prediction quality reweighting and
query feature fusion; and 4) an improved self-training pipeline
with a Dynamic Teacher Updating Interval (DTUI) that optimizes
pseudo-label quality. By leveraging these components, FRANCK
effectively adapts a source-pre-trained DETR model to a target
domain with enhanced robustness and generalization. Extensive
experiments on several widely used benchmarks demonstrate that
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our method achieves state-of-the-art performance, highlighting its
effectiveness and compatibility with DETR-based SFOD models.

Index Terms—Transfer learning, object detection, source-free
domain adaptation, contrastive learning.

I. INTRODUCTION

IN THE past decade, deep neural networks [1], [2]
have significantly advanced object detection (OD). How-

ever, state-of-the-art detectors, such as Faster R-CNN [3]
and DEtection TRansformer [4] (DETR), require large-scale,
high-quality labeled data to achieve optimal performance.
Collecting and annotating such data is often expensive and
labor-intensive. Furthermore, real-world scenarios frequently
exhibit domain shift, where the training data or source domain
distribution differs from test data or target domain distribution
[5]. This shift severely degrades the generalization ability of
conventional OD models, which has led to extensive research
on unsupervised domain adaptive object detection (DAOD)
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].
Most DAOD methods rely on adversarial feature alignment
[8], [10] or intermediate domain generation [6], [7], both
of which require access to annotated source data. However,
in real-world applications, source data is often unavailable
due to privacy concerns or transmission constraints [18]. In
such cases, traditional DAOD techniques become infeasi-
ble, necessitating source-free object detection (SFOD) as an
alternative.

As illustrated in Fig. 1, SFOD tackles domain adaptation
without access to labeled source data. Instead, it relies solely
on a source-pre-trained model for adaptation to the target
domain [19], [20], [21], [22], [23], [24], [25], [26]. Due to
the absence of source data, most SFOD methods employ a
Mean Teacher [27] framework with pseudo-labeling to facili-
tate adaptation. While these approaches have shown promise,
they predominantly focus on Faster R-CNN architectures,
leveraging components such as RPNs [21], [28]. Consequently,
they lack critical insights into adapting DETR-based models
[22], [24]. Recent works [23], [29] and a concurrent study [26]
have begun exploring SFOD for DETR. However, these efforts
either overlook DETR-specific architectural components [23],
[29] or focus excessively on teacher-student optimization [26],
failing to fully exploit DETR’s unique features. Addressing
these gaps, we propose a DETR-oriented SFOD framework
that effectively incorporates DETR-specific designs for robust
adaptation.
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Fig. 1. Illustration of SFOD setting. Left: Conventional Domain Adaptive
Object Detection (DAOD) approaches utilize both labeled source Domain
(DS ) and unlabeled target domain (DT ) to transfer the detector to the target
domain. Right: Source-Free Object Detection (SFOD) adapts source pre-
trained model to the target domain when source data is unavailable.

To address the source-free adaptation challenges faced by
DETR, we propose Feature Reweighting ANd Contrastive
Learning NetworK (FRANCK), a unified query-centric
framework that enhances DETR’s adaptation capabilities.
We explicitly decompose these challenges into three inter-
connected levels of alignment: category-level alignment
(mitigating inter-class confusion), instance-level alignment
(balancing and supervising samples via pseudo-labels), and
feature-level alignment (stabilizing cross-domain feature
transfer). Guided by this perspective, each module in
FRANCK directly targets one level while sharing a com-
mon query-centric interface. CMMB enhances category-level
alignment by performing class-wise contrastive learning with
matching-based memory banks to improve query discrim-
inability. OSSR addresses instance-level alignment by dynam-
ically reweighting query losses through attention-derived
objectness scores, mitigating class imbalance and inadequate
supervision. UQFD improves feature-level alignment by dis-
tilling features with uncertainty-weighted query-fused masks,
leading to more stable teacher-student transfer.

These modules form a coherent pipeline and mutually
reinforce one another, as illustrated in Fig. 2. Stronger
query embeddings from CMMB enable more precise sam-
ple weighting in OSSR; enriched queries also guide UQFD
to produce more reliable distillation masks; and the stable
features obtained from UQFD feed back into both CMMB
and OSSR. Through this shared reliance on query rep-
resentations, FRANCK unifies contrastive learning, sample
reweighting, and feature distillation across category-level,
instance-level, and feature-level alignment, resulting in syner-
gistic improvements in both discriminability and transferability
for DETR-based SFOD.

Our main contributions are as follows:
• We systematically explore the challenges of SFOD on

DETRs, an area that has received limited attention, and
propose a novel framework that explicitly incorporates
DETR-specific architectural designs.

• We propose FRANCK, a novel framework that introduces
several key innovations tailored for DETR-based source-
free domain adaptive object detection. Motivated by a

Fig. 2. A conceptual framework illustrating how FRANCK addresses
DETR\’s source-free challenges through a unified query-centric design.
The three challenges are organized as category-level alignment (inter-class
confusion), instance-level alignment (class imbalance and inadequate super-
vision), and feature-level alignment (unstable feature alignment). Each module
(CMMB, OSSR, UQFD) targets one of these challenges, while their shared
reliance on query representations forms a synergistic loop where improved
features, better weighting, and reliable distillation reinforce each other for
robust and efficient adaptation.

query-centric representation enhancement principle, the
components cooperate to effectively adapt the model to
the target domain and improve detection performance.

• We conduct extensive experiments on several widely-used
benchmarks, demonstrating that FRANCK achieves state-
of-the-art performance in SFOD for DETRs.

The remainder of this paper is structured as follows: Sec-
tion II provides a comprehensive review of related work,
covering Object Detection (OD), Domain Adaptive Object
Detection (DAOD), Source-Free Domain Adaptation (SFDA),
and Source-Free Object Detection (SFOD). Section III details
the proposed FRANCK framework and its key components.
Section IV presents experimental results, including quantita-
tive analysis, ablation studies, and visualization experiments,
along with essential implementation details. Finally, Section V
summarizes our findings and concludes the paper.

II. RELATED WORK

This section provides an overview of research relevant to
our method, covering OD, DAOD, SFDA, and SFOD.

A. Object Detection

Object detection (OD) seeks to identify and localize objects
in images. With the rise of deep learning and convolu-
tional neural networks (CNNs) [2], OD has made significant
progress. Traditional methods are typically categorized into
two-stage detectors (e.g., R-CNN [30], Faster R-CNN [3]) that
generate region proposals before classification, and one-stage
detectors (e.g., SSD [31], FCOS [32], YOLO [33]) that predict
objects directly. While efficient, these models often rely on
heuristic components like Non-Maximum Suppression (NMS),
making them sensitive to hyperparameters.

Transformer-based models have redefined OD by formu-
lating it as a set prediction problem. DETR (DEtection
TRansformer) and its variants [4], [34], [35], [36], [37], [38],
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[39] remove the need for NMS, enabling end-to-end detection.
Variants such as Deformable DETR [38] and DN-DETR [37]
improve convergence and robustness. However, DETR-based
models often underperform under domain shifts and have
limited cross-domain generalization [12], [13], [14], [15]. In
particular, DETR-based source-free object detection remains
underexplored. To bridge this gap, we adopt DETR as our
base and investigate its extension to source-free cross-domain
object detection.

B. Domain Adaptive Object Detection

Domain Adaptive Object Detection (DAOD) aims to mit-
igate domain shifts and enhance the generalization ability
of object detectors. Most DAOD research has focused on
traditional detection frameworks such as Faster R-CNN [40],
[41], [42], [43], [44], [45], [46], [47], [48], FCOS [8], [9],
[10], [11], and YOLO [49], [50]. Recently, DAOD methods
tailored for DETRs have emerged. For example, SFA [12]
aligns features at both encoder and decoder levels, while
MTTrans [13] adopts multi-level feature alignment within
a Mean Teacher [27] framework. Other approaches, such
as DA-DETR [14], integrate CTBlender with Split-Merge
Fusion and Scale Aggregation Fusion for better alignment.
MTM [15] utilizes mask-integrated adversarial alignment and
mixed queries to ensure consistent learning, while BiADT
[16] introduces bi-directional domain alignment with token-
wise domain embeddings. Similarly, ACCT [17] employs
adversarial alignment, confidence thresholding, and contrastive
learning to tackle domain shifts. Despite their effectiveness,
these methods rely on source data and labels, making them
inapplicable in scenarios where source data is unavailable.
Our work addresses this limitation by enabling DETR-based
DAOD in a source-free setting.

C. Source-Free Domain Adaptation

Conventional Unsupervised Domain Adaptation (UDA)
relies on source domain data and labels, limiting its appli-
cability in privacy-sensitive scenarios [18], [51] and under
data transmission constraints [25], [52]. To address this,
Source-Free Domain Adaptation (SFDA) has been introduced,
enabling adaptation using only unsupervised target data and
a pre-trained source model, without direct access to source
data. SFDA has been successfully applied to tasks like
image classification [53], [54], semantic segmentation [55],
human pose estimation [56], gesture recognition [57], and
panoramic segmentation [58]. It leverages various model fine-
tuning strategies, with semi-supervised knowledge distillation
in a teacher-student framework [52] being a widely adopted
approach. Additionally, contrastive learning has proven effec-
tive in improving generalization by learning discriminative
feature representations [59], [60].

Despite SFDA’s success in classification and segmentation,
its direct application to object detection is challenging. Unlike
these tasks, object detection requires both classification and
localization of multiple objects, demanding specialized archi-
tectures like Faster R-CNN [3] and DETR [4]. To tackle this,
Source-Free Object Detection (SFOD) has emerged, enabling

domain adaptation for detection tasks. Our work extends
SFOD to DETR-based detectors, an area largely unexplored,
enhancing DETR’s adaptability under domain shifts.

D. Source-Free Object Detection

To tackle the challenge of source-free adaptation in object
detection, researchers have developed Source-Free Object
Detection (SFOD) methods. SED [19] improves detection per-
formance using self-entropy descent and mosaic augmentation
[61], while LODS [21] employs style transfer modules and
multi-level feature alignment to minimize domain discrep-
ancy. IRG-SFDA [20] constructs information relation graphs
to enhance knowledge distillation and contrastive learning.
AASFOD [22] applies adversarial alignment on target self-
divided data obtained via Monte-Carlo sampling. Meanwhile,
Balanced Teacher (BT) [41] introduces class-balanced instance
selection and progressive target variance minimization to
mitigate imbalance issues. DACA [25] extends SFOD to multi-
source scenarios by incorporating region proposal fusion,
pseudo-label ensembling, and class-wise contrastive learning.
However, most of these methods either depend on Faster R-
CNN-specific components, such as region proposal networks
(RPNs), or fail to consider modern DETR architectures.

Notably, a few studies have explored the feasibility of
SFOD on DETRs. TeST [23] develops a two-stage self-
training process that adapts the teacher and student networks
separately, but lacks specific designs tailored to DETR com-
ponents that could further enhance performance. A concurrent
study, DRU [26], employs masked image consistency [62]
and dynamic retraining-updating [63] for effective SFOD on
DETRs. Nevertheless, DRU [26] focuses more on general
self-training and updating mechanisms, overlooking effective
DETR feature adaptation that could further improve SFOD
performance. In contrast, our proposed method is carefully
designed for the DETR architecture, enabling efficient feature
learning and improving detection performance on DETRs.

III. PROPOSED METHOD

A. Preliminaries

1) Problem Setup: We first introduce the problem setup
for SFOD tasks. Unless otherwise specified, we consider
SFOD tasks under an unsupervised domain adaptation (UDA)
setting, where the target labels are entirely unavailable. In
the SFOD setting, there exists a source domain DS sampled
from source distribution pS (xS , yS ) and a target domain DT

sampled from target distribution pT (xT , yT ), where x denotes
image and y denotes corresponding label. We follow the
closed-set DA setting, in which DS and DT both have k
foreground categories. Since source data and distribution are
unavailable for adaptation, only a source pre-trained model θS

and unsupervised target dataset XT = {xi
T }

NT
i=1 are available. Our

goal is to perform effective adaptation, obtaining a detection
model θT : xT → yp that works well on the target domain. We
utilize and focus on DETR [4], [38] structure for detection. We
use Deformable DETR [38] as the base detector and denote
the total number of object queries in one DETR model as nq.
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2) Mean-Teacher-Based SFOD: In many SFDA and SFOD
applications, the Mean Teacher (MT) framework [27] is a key
self-training approach that enables model adaptation without
target-domain supervision [13], [20], [21], [22], [25], [26].
Originally designed for semi-supervised learning, MT lever-
ages strong-weak augmentation and consistency regularization
for knowledge transfer. A key feature is its Exponential
Moving Average (EMA) update, ensuring stable parameter
update.

In SFOD, both the teacher and student models are ini-
tialized with an identical source-pre-trained network. During
training, a target-domain sample from DT undergoes strong
and weak augmentations, which are then fed into the student
and teacher networks, respectively. Without supervision, the
teacher generates pseudo-labels by confidence-thresholding
weakly augmented sample predictions. The student model then
updates its parameters by minimizing the following loss:

Ldet = Lcls + Lreg + Laux, (1)

where Ldet is the detection loss of DETRs, Lcls and Lreg
the classification and regression loss, respectively. Laux is the
auxiliary loss, if applicable. Following Deformable DETR
[38], we adopt Focal Loss [64] as the classification loss.
The student parameters Θstu are updated via backpropagation,
while the teacher parameters Θtea follow EMA updates:8<:Θstu ← Θstu + η

∂(Lstu)
∂Θstu

,

Θtea ← αEMAΘtea + (1 − αEMA)Θstu,

(2a)

(2b)

where η is the student learning rate and αEMA the EMA update
rate. MT provides robust model optimization and adaptation
in semi-supervised and cross-domain settings, making it a
common baseline for many DAOD and SFOD approaches.

B. Overview

In this section, we outline our problem setup, the Mean-
Teacher-based SFOD architecture with its update mechanism,
and the key components of FRANCK. CMMB leverages
pseudo-label-induced bipartite matching to build class-wise
memory banks for contrastive learning, enhancing feature
discriminability. OSSR mitigates class imbalance by assign-
ing dynamic instance-wise loss weights via a query-fused
objectness score. UQFD improves knowledge transfer through
uncertainty-weighted, objectness-guided feature distillation.
Finally, we present the overall training loss and DTUI, which
strengthens Mean Teacher robustness by dynamically adjusting
the EMA update interval.

C. Contrastive Learning With Matching-Based Memory Bank

While the original MT framework with pseudo-labeling
lays a solid foundation for SFOD performance, feature rep-
resentation remains suboptimal [20], [25]. To address this, we
adopt class-wise contrastive learning following prior studies
[25], [45], [65] and fuse multi-level decoder query features
to enhance learning. Additionally, given the class imbalance
problem in OD tasks and inspired by bipartite matching in
DETRs, we introduce memory banks and a pseudo bipartite
matching strategy for class-wise contrastive learning.

1) Class-Wise Contrastive Learning: Contrastive learning
enhances model discriminability by pulling positive samples
closer and pushing negatives apart. We build our contrastive
loss on the Supervised Contrastive Loss (SCL) [65]. Suppose
we have c sample groups, denoted as Ka = K0∪K1∪· · ·∪Kc−1
where each group corresponds to a category. Following SCL,
the class-wise contrastive loss is formulated as:

Lcont =
1
c

c−1X
i=0

−1
|Ki|

X
Q∈Ki

X
K+∈Ki

log
exp(Q · K+/τ)P
K∈Ka

exp(Q · K/τ)
, (3)

where Q is the contrastive learning query feature that attracts
positive keys and repels negative keys in contrastive learning.

2) Query Feature Fusion and Memory Bank: For con-
trastive learning in object detection, it’s intuitive to use
class-wise instance-level features directly as contrastive sam-
ples. However, this can be ineffective or even detrimental
because (1) unlike Faster R-CNN, which generates multiple
contrastive samples per object via the anchor mechanism [3],
[20], DETR aims to assign only one query per object at a time
[4]; and (2) real-world class distributions are often imbalanced,
leading to significant biases. To mitigate these issues, we
adopt a simple yet effective memory bank technique [25],
[66], [67]. We construct k + 1 memory banks {Mi}

k+1
i=0 , one

for each category, including a background memory bank M0.
Background features are considered because DETR assigns
queries to different objects and naturally generates diverse
negative samples, making background features valuable for
contrastive learning. Each memory bank maintains a fixed
maximum size lM and is updated using a First-In-First-Out
(FIFO) strategy. The non-empty memory banks are denoted as
{Mi}

v+1
i=0 , where M0 corresponds to the background memory

bank and v ≤ k. The contrastive loss with memory banks is:

Lcont =
1
v

v+1X
i=1

−1
|Mi|

X
Q∈Mi

X
K+∈Mi

log
exp(Q · K+/τ)P

K∈Ma
exp(Q · K/τ)

,

(4)
where Ma represents all samples across memory banks. In
Eq. (4), the class index i starts from 1, as background features
are only considered negative samples. To further exploit the
semantic information contained in multi-scale transformer
features, we fuse multi-scale decoder output features of object
queries via scale-wise summation. This strategy enhances
the representation of instance-level features, providing richer
contextual information for improved contrastive learning.

3) Pseudo Bipartite Matching Assignment: In the context of
contrastive learning for SFOD, a significant challenge stems
from the lack of ground truth objects in the target domain,
which complicates the construction of contrastive pairs. Due
to the set-prediction mechanism of DETRs, RoI-based region
features extracted from the backbone [20], [25], [45] (e.g.,
using RoIAlign [68]) are decoupled from the instance rep-
resentations formed by the transformer and object queries.
Thus, contrastive learning applied only at the backbone level
cannot directly enhance the discriminative power of the object
queries, making contrastive learning on object queries a
more suitable choice for DETR-based methods. To perform
contrastive learning on object queries, a natural approach
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Fig. 3. The proposed Feature Reweighting ANd Contrastive Learning NetworK (FRANCK). Source data is only available at the source pretraining stage.
Within FRANCK, the teacher and student models collaborate to optimize the student network through UQFD, OSSR, and CMMB. The teacher network is
updated dynamically using DTUI, ensuring more stable and effective adaptation. “Reg” and “Cls” refer to the regression and classification heads of DETR,
respectively. “BBox” and “C.Pred.” denote the bounding box predictions and classification predictions, respectively, while “PL” denotes pseudo-labels.

is to select foreground features from all nq query features
under DETRs. A straightforward yet suboptimal method is
to filter queries based on prediction confidence. Specifically,
if a query’s highest probability corresponds to a foreground
class and surpasses a predefined threshold, it is considered a
foreground feature; otherwise, it is classified as background.
However, this approach is heuristic and lacks robustness.

Instead, we leverage bipartite matching, one of the core
assignment mechanisms in DETRs [4]. Since DETRs assign
queries to ground-truth labels via bipartite matching, we
extend this principle to contrastive pair construction. More
specifically, queries matched with pseudo-labels corresponding
to an i-th foreground class are directly taken as foreground fea-
tures, while unmatched queries are classified as background.
This assignment strategy naturally integrates with DETRs
and provides a more stable and unbiased feature selection
mechanism. To this end, we adopt bipartite-matching-based
contrastive pair assignment between student query features and
pseudo-labels as our final strategy for constructing contrastive
pairs, as illustrated in Fig. 3. By leveraging pseudo bipartite
matching along with the memory bank, we achieve robust
class-wise contrastive learning in SFOD for DETRs.

D. Objectness Score Sample Reweighting

Class imbalance is a common challenge in object detection
tasks. A common solution is soft sampling, i.e., reweighting
based on prediction quality [64], [69] or IoU quality [70].
However, in SFOD tasks, the absence of ground-truth labels
makes it difficult to estimate prediction quality accurately.

To overcome this, inspired by [71], [72] and [73], we
adopt the objectness score, which leverages intrinsic feature
properties of feature maps. Following these approaches, we
first extract and normalize multi-scale encoder features {F i

e|i =

3, 4, 5} and decoder query features Fq, where F i
e ∈ R

Hi×Wi×C

and Fq ∈ R
nq×C , together with query bounding boxes as

bbox ∈ Rnq×4. To focus encoder features on query-relevant
object information, we perform query-wise fusion and sum-
mation to obtain query-fused encoder features {F i

eq|i = 3, 4, 5}:

F i
eq =

1
nq

nq−1X
j=0

F i
e · FT

q [ j], (5)

where F i
eq ∈ R

Hi×Wi represents the fused encoder feature across
all nq queries. Note that since the teacher model in the Mean
Teacher (MT) framework undergoes a more stable updating
process and encodes more robust features compared student,
we leverage F i

e from the teacher encoder to ensure stable
and reliable knowledge transfer. Once the attention map is
obtained, prior works [71], [73] typically upsample the feature
map to the original image scale and pooled bounding box
features using approximate integer coordinates. However, this
naı̈ve approach can lead to information loss and inadequate
extraction of small object features, introducing significant bias.
Instead, we adopt RoIAlign [68], which uses bilinear interpo-
lation [74] for precise feature extraction and information loss
mitigation. Note that this use of RoIAlign does not contradict
our earlier statement regarding its limitations in CMMB. Here,
RoIAlign is adopted to improve the precision of attention
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score pooling, particularly in the case of small objects, not
for enhancing the object detection model through contrastive
learning. It thus acts as a natural and effective substitute
for direct pooling. Specifically, we apply RoIAlign to extract
proposal features F i

align from the corresponding query-fused
encoder features F i

eq:

F i
align = RoIAlign(F i

eq, bbox), (6)

where F i
align ∈ R

nq×Ha×Wa , with Ha and Wa representing the
height and width of the RoIAlign output, respectively. Each
query is then assigned an attention score of Ha×Wa, enabling
us to compute a set of objectness scores:

S =

( X
i=3,4,5

X
Ha×Wa

F i
align[ j]

)nq−1

j=0

, (7)

The computed objectness scores S encode query-wise atten-
tion over multi-scale features. We observe that utilizing all
object queries often leads to higher objectness attention for
easily detectable foreground or background objects, aligning
with findings in DETRDistill [72]. To mitigate foreground-
background class imbalance and improve model discrimination
for hard samples, we assign higher weights to foreground areas
and hard samples with low attention scores. Specifically, we
employ these normalized weights to refine the original Focal
Loss [64] in Deformable DETR [38] for classification:

Lwcls =
1
nq

nq−1X
i=0

wi
�
−αt(1 − pt)γ log(pt)

�
, (8)

and
wi = (1 −MinMaxScaler(S[i]))β, (9)

where MinMaxScaler(S[i]) = S[i]−min(S)
max(S)−min(S) , and β is a smooth-

ing hyperparameter. αt and γ are the Focal Loss balancing
parameters. By reweighting the query loss with attention-based
objectness scores, our method encourages the model to focus
more on foreground regions and hard samples. This enhances
mutual learning under the teacher model’s pseudo supervision
and improves model discriminability.

E. Uncertainty-Weighted Query-Fused Feature Distillation

To ensure robust distillation between the teacher and student
networks in SFOD, consistency regularization [20], [25], [75]
is a widely adopted approach. However, existing methods are
primarily designed for Faster R-CNN, where shared proposals
naturally align classification and localization scores for consis-
tency regularization. In contrast, DETR employs a query-based
mechanism, where different queries correspond to different
objects, making direct consistency loss computation (e.g., the
KL divergence) based on prediction indices infeasible. For
instance, in most cases, the i-th predictions from the teacher
and student networks correspond to different objects, rendering
direct consistency enforcement impractical.

To address this challenge, we opt for feature imitation
instead of logit mimicking for knowledge distillation, a strat-
egy that has proven effective in object detection tasks [72],
[76], [77]. Given that the student network in the original Mean

Teacher framework processes strongly augmented images, we
introduce an additional forward pass of these augmented
images through the teacher model. This forward pass is solely
used to extract image-level features for distillation. Following
DETRDistill [72], we reweight query-fused features based on
prediction quality and formulate a unified feature distillation
loss, denoted as Lfdis.

1) Uncertainty-Based Query Weighting: We begin by
describing our approach to extracting features for distillation.
Utilizing object queries and image-level features, we construct
objectness-weighted feature maps, similar to OSSR. However,
DETRDistill [72] found that naı̈ve objectness-weighted feature
distillation is ineffective due to the varying contributions of
queries. To address this, DETRDistill applies soft attention
masks with quality scores [78] derived from GT labels and
teacher predictions. However, this does not apply to SFOD
tasks, where GT labels are unavailable. To overcome this
limitation, we leverage uncertainty estimation, using prediction
entropy as the quality score. Specifically, we extract prediction
scores from queries and compute entropy for teacher model
predictions, denoted as E ∈ Rnq . To assign higher weights
to more reliable regions identified by the robust teacher
model, we normalize the query weights using Wq = (1 −
MinMaxScaler(E))β

′

, where we set β′ = 1 for simplicity.
2) Query-Fused Feature Distillation: Following DETRDis-

till, we compute feature distillation loss by applying soft masks
across queries and derive a unified weighted loss. Given a
single query feature F j

q and the last encoder layer feature Fe,
we derive the query-fused feature F j

eq ∈ R
H×W by:

F j
eq = Fe · (F j

q)T . (10)

Then by using F j
eq as an objectness-based soft mask, we can

perform weighted feature imitation by:

Lfdis =
1

nqHWC

nq−1X
j=0

W j
q



F j
eq � (FT − FS )



2
2
, (11)

where W j
q and F j

eq denote the j-th elements of Wq and
the query-fused feature, respectively. FT and FS represent
the last encoder layer features of the teacher and student
models, respectively, and � denotes Hadamard product. By
incorporating weighted feature distillation, the teacher guides
the student to generate more stable feature representations,
improving the robustness of knowledge transfer.

F. Dynamic Teacher Updating Interval

To enhance the conventional Mean Teacher self-training
approach, we introduce an improved updating mechanism
termed Dynamic Teacher Updating Interval (DTUI). As dis-
cussed in Sec. III-A, we adopt the Mean Teacher framework to
ensure a robust and efficient adaptation scheme. Specifically,
after performing forward propagation on both the teacher and
student networks, we first filter pseudo-labels by applying a
confidence threshold of 0.3 to the teacher’s predictions. We
then compute the total loss function as follows:

Ltotal = Lwcls + Lreg + Laux + ω1Lcont + ω2Lfdis, (12)
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where Lwcls, Lreg, and Laux collectively form the detection
loss Ldet by replacing the original classification loss with Eq.
(8). The student model is then optimized using Ltotal, while
the teacher model is updated using EMA with a momentum
factor of αEMA.

1) DTUI: In SFOD tasks, domain shifts and the absence
of ground truth labels can destabilize the student model’s
prediction and optimization, leading to biased teacher updates
and reduced mutual learning effectiveness [25], [63]. To mit-
igate this issue, AASFOD [22] and DACA [25] adopt fixed
EMA update intervals for each experiment, which is helpful
but ignores the adaptation progress over time. In contrast, we
propose a dynamic EMA interval iEMA, formulated as:

iEMA = δ+ be/εc , (13)

where δ is a base interval that controls the steps for stable
knowledge accumulation, e represents the current epoch index,
and ε denotes the increment rate. Under this dynamic strategy,
while the student network is updated at every iteration using
Eq. (2a), the teacher network is updated every iEMA iterations.
This linear interval adjustment allows for frequent parameter
exploration at the early stages of adaptation, facilitating a
more effective search of the parameter space, and progressively
stabilizing the model’s updates as training progresses.

IV. EXPERIMENTS

This section presents the datasets, experimental setup,
experimental results, and comprehensive analyses from quan-
titative, ablation, and visualization studies to validate our
method.

A. Datasets

We evaluate our approach on four widely used object
detection datasets: Cityscapes [81], Foggy Cityscapes [82],
Sim10k [83], and BDD100K [84], along with a synthesized
rainy Cityscapes dataset. Our experiments cover cross-weather,
synthetic-to-real, and cross-scene adaptation.

1) Cross-Weather Adaptation: Cityscapes [81] is an urban
scene dataset with 2,975 training and 500 validation images
from various cities. Foggy Cityscapes [82] extends it via
synthetic fog generation. We use Cityscapes and its foggy
variant (with 0.02 fog density) as the source and target
domains, respectively. To further evaluate robustness under
adverse weather, we introduce a rainy version of Cityscapes
using RainMix [85], following prior works [79], [86], enabling
assessment across diverse weather conditions [79], [87], [88].

2) Synthetic-to-Real Adaptation: Sim10k [83], generated
from the GTA V game, contains 9,000 training and 1,000
validation images. In this setting, Sim10k is the source domain
and Cityscapes is the target domain. This setting assesses
the ability to generalize from synthetic data to real data
distributions, offering benefits such as reduced data collection
costs and enhanced data diversity in real-world scenarios.

3) Cross-Scene Adaptation: BDD100K [84] is a large-
scale autonomous driving dataset covering different times
of the day. Following prior work [12], [13], [26], we use
only daytime images, comprising 36,728 training and 5,258

validation images. In this setting, Cityscapes is used as the
source domain and BDD100K daytime as the target domain.
This assesses a detection model’s adaptability across diverse
scenes.

4) Cross-Dataset Adaptation: KITTI [89] is an autonomous
driving dataset collected from diverse real-world scenes. In our
setting, all 7,481 annotated images from KITTI are used as the
source domain, while Cityscapes serves as the target domain.
This setup evaluates the detection model’s ability to adapt
across different camera systems and dataset characteristics.

5) Cityscapes-to-ACDC Adaptation: ACDC [90] is
a dataset designed for comprehensive understanding of
autonomous driving scenes. It encompasses four types of
challenging real-world weather conditions, including snow,
rain, night, and fog. This adaptation setting is used to further
evaluate the effectiveness and robustness of our method under
diverse and complex real-world domain shifts.

B. Baselines

We compare our method against multiple baseline settings,
including source-only, DAOD, SFOD, and Oracle.

1) Source-only: For Source-only baselines, the source pre-
trained model is directly evaluated on the target domain
without adaptation, serving as a lower bound for domain
adaptation.

2) DAOD: We compare our approach with previous DETR-
based DAOD methods, including SFA [12], MTTrans [13],
DA-DETR [14], MTM [15], BiADT [16], and ACCT [17].
Among them, only BiADT uses DAB-Deformable-DETR [36],
a variant of Deformable DETR [38], as its base detector, while
all others adopt Deformable DETR. Additionally, we also
compare with approaches based on different detectors, includ-
ing SIGMA++ [8], CIGAR [9], EPM [10], and MGA-DA [11].
These comparisons provide insights into DAOD performance
on DETRs and highlight our method’s advantages.

3) SFOD: We include DETR-based SFOD methods such
as TeST [23] and the concurrent work DRU [26]. Since TeST
is not open-source, we implement and reproduce it, tuning
hyperparameters for optimal results. OnDA-DETR [29] is
omitted due to its similarity to vanilla Mean Teacher, for which
we conduct separate experiments. Given the limited number of
DETR-based SFOD works, we also compare against Faster R-
CNN-based SFOD methods, including SED [19], IRG-SFDA
[20], AASFOD [22], and BT [24].

4) Oracle: For Oracle baselines, models are trained and
tested directly on the labeled target domain without source
pretrain, representing the upper bound of DAOD to some
extent.

Following prior work, detection performance is evaluated
using mean average precision (mAP) with IoU=0.5. From
Tab. II to Tab. IV, we use R-50 and R-101 to refer to
ResNet-50 and ResNet-101 [2], respectively, and V-16 to
denote the VGG-16 [93] network. Our comparisons include
methods based on FCOS [32], DETR [4], [38], and Faster R-
CNN (FRCNN) [3]. Notably, apart from BiADT [16], which
adopts DAB-Deformable DETR [36], which is a variant of
Deformable DETR [38], all DETR-based approaches in our
study are built upon Deformable DETR [38].
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TABLE I
HYPERPARAMETERS SETTING

C. Implementation Details

In this section, we provide the implementation details of the
experiments. The hyperparameters, along with their notations,
descriptions, and values, are summarized in Tab. I. In the
source pretraining stage, we train the model for 50 epochs,
starting with a learning rate of 2× 10−4, which is reduced by
a factor of 0.1 after 40 epochs. During the adaptation stage,
the model is trained for 30 epochs with a fixed learning rate
of 5 × 10−5. All experiments use a batch size of 2 per GPU,
with training conducted on 4 NVIDIA RTX 4090 GPUs.

D. Comparison With State-of-the-Art

In this section, we present quantitative comparisons with
state-of-the-art methods. The results are summarized in Tab. II,
Tab. III, Tab. IV, Tab. V, and Tab. VI, with the best mAP(%)
values and second-best mAP values (excluding Oracle results)
bolded and underlined, respectively. Our method achieves
state-of-the-art results across multiple domain adaptation set-
tings. In cross-weather adaptation, it attains 44.9 mAP on
Cityscapes to Foggy Cityscapes, showing that the model
remains robust and effectively overcomes domain shift even
when object visibility is severely reduced, and reaches 50
mAP for rainy conditions. In synthetic-to-real adaptation,
it achieves 63.1 mAP, demonstrating strong transferability
from cost-effective synthetic data to complex real scenes. In
Cityscapes-to-ACDC adaptation, it surpasses DRU across all
weather conditions with gains of 1.0 to 4.6 mAP, confirming
its ability to handle diverse environments. In cross-scene and
cross-dataset adaptation, it reaches 40.7 mAP and 48.5 mAP
respectively, further proving its robustness across varying
locations and data sources.

E. Ablation Study

In this section, we present several ablation studies to assess
the design and effectiveness of our method. Unless speci-
fied, we conduct all ablation studies on Cityscapes to Foggy
Cityscapes adaptation in the Cross-weather setting.

1) Component Ablation: We evaluate the impact of differ-
ent components by comparing performance with and without
each component. As shown in Tab. IX, the ablation results

demonstrate that (1) the Mean Teacher strategy and dynamic
MT updating interval improve SFOD performance by enhanc-
ing robust training and knowledge distillation, and (2) The
proposed methods, including CMMB, OSSR, and UQFD, each
contribute to the final detection performance, resulting in a 3.2
mAP gain based on Mean Teacher with DTUI with only 28.5%
additional training time.

2) Effectiveness Across Backbones: While our main exper-
iments use ResNet-50, we further evaluate transformer-based
backbones, including ViT-Base [94] and Swin Transformers
[95] of different scales—Swin-T (tiny), Swin-S (small), Swin-
B (base), and Swin-L (large). As shown in Tab. VII, vanilla
ViTs perform worse overall due to their single-scale, low-
resolution features [96], yet the trends remain consistent: (1)
domain shifts lead to similar performance degradation across
all backbones, and SFOD methods effectively mitigate this
issue; and (2) our method consistently surpasses MT [27]
and DRU [26] on every backbone tested, highlighting both its
robustness and its ability to generalize across different feature
extractors.

3) Effectiveness Across DETR Variants: Since our main
experiments are based on Deformable DETR [38], we further
investigate the adaptability of our method by evaluating it
on different DETR variants, including DINO DETR [39] and
RT DETR [35]. Notably, both DINO DETR and RT DETR
incorporate a query selection mechanism that relies on ground
truth labels, which contradicts the SFOD setting. To address
this limitation, we disable query selection during teacher
forward propagation, subsequently leveraging pseudo-labels
for student query selection and SFOD training. Experimental
results in Tab. VIII demonstrate that our method consistently
surpasses baseline by a large margin across all three DETR
variants, highlighting both its effectiveness and adaptability.

4) Hyperparameter Sensitivity: To evaluate the robustness
of the proposed components, we conduct a hyperparameter
sensitivity analysis on several key hyperparameters: (1) ω1
and ω2, which balance the extra losses, (2) β and β′, which
control the weights for query-based sample reweighting and
feature distillation, respectively. As shown in Fig. 5, the
proposed method demonstrates strong robustness to small
variations in these hyperparameters, further validating its
effectiveness.

5) Contrastive Pair Construction Strategy Performance and
Noise Robustness: We evaluate two contrastive pair con-
struction strategies in CMMB: Threshold and Matching.
For Threshold, we first associate student predictions with
teacher pseudo-labels by IoU-based assignment, then filter
the matched pairs using a student confidence threshold. For
Matching, we instead perform a global one-to-one bipartite
assignment between student and teacher outputs. As shown in
Fig. 4(c), the threshold strategy yields mAPs of 43.7/44.4/44.3
at thresholds 0.3/0.6/0.8, while matching achieves 44.9. This
indicates that relying on student confidence introduces bias
from unstable predictions, whereas bipartite matching with
teacher guidance leads to more reliable contrastive pairs. We
further test robustness by injecting label noise, as shown in
Fig. 4(d). At 10% noise, both remain close (44.7 vs. 44.5), but
as noise rises to 70%, threshold drops to 42.1 while matching
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TABLE II
RESULTS OF CROSS-WEATHER ADAPTATION (FOGGY SCENARIO). “SF” DENOTES SOURCE-FREE. “V” AND “R” IN BACKBONE REPRESENT VGG AND

RESNET, RESPECTIVELY. “FRCNN” STANDS FOR FASTER R-CNN. FOR EACH COLUMN, WE BOLD THE BEST AND UNDERLINE THE SECOND-
BEST RESULTS SEPARATELY FOR NON-SOURCE-FREE AND SOURCE-FREE APPROACHES (EXCLUDING ORACLE)

TABLE III
RESULTS OF CROSS-WEATHER ADAPTATION (RAINY SCENARIO). “SF” DENOTES SOURCE-FREE. “V” AND “R” IN BACKBONE REPRESENT VGG AND

RESNET, RESPECTIVELY. “FRCNN” STANDS FOR FASTER R-CNN. FOR EACH COLUMN, WE BOLD THE BEST AND UNDERLINE THE SECOND-
BEST RESULTS SEPARATELY FOR NON-SOURCE-FREE AND SOURCE-FREE APPROACHES (EXCLUDING ORACLE)

Fig. 4. Experimental results from the ablation studies: (a) Influence of different features on object estimation. (b) Influence of various encoder feature fusion
layers. (c) Comparisons between thresholding and matching in CMMB. (d) Influence of controlled noise levels in CMMB. (e) Influence of memory bank (MB)
size. (f) Influence of memory bank (MB) composition, including first-in-first-out (FIFO), random replacement (RR), and center-guided replacement (CGR).

stays at 43.3. This demonstrates that Hungarian matching’s
global assignment mitigates mislabeled samples and maintains

a purer memory bank, whereas local thresholding admits more
noisy entries.
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Fig. 5. Hyperparameter Sensitivity Analysis. We illustrate the sensitivity of four key hyperparameters: ω1, ω2, β, β′, ε, and cthresh (Confidence Threshold).
Each plot shows performance variation when adjusting a single hyperparameter while keeping the others fixed. The definitions of these hyperparameters are
provided in Table I.

TABLE IV

RESULTS OF SYNTHETIC-TO-REAL (S2R) AND CROSS-DATASET (K2C)
ADAPTATION. “SF” DENOTES SOURCE-FREE. “V” AND “R” IN BACK-

BONE REPRESENT VGG AND RESNET, RESPECTIVELY. “FRCNN”
STANDS FOR FASTER R-CNN. FOR EACH COLUMN, WE BOLD

THE BEST AND UNDERLINE THE SECOND-BEST RESULTS
SEPARATELY FOR NON-SOURCE-FREE AND SOURCE-

FREE APPROACHES (EXCLUDING ORACLE)

6) Dynamic MT Updating: Several recent studies explore
dynamic teacher updates based on uncertainty estimation,
leveraging techniques such as logits variance (Var) [26],
prediction entropy (Ent) [63], and Soft Neighborhood Density
(SND) [63], [97]. To further investigate this, we conduct an
ablation study comparing three different updating strategies:

1) Fixed intervals. Teacher updates after constant itera-
tions, with the meta interval defining the update period.

2) Uncertainty-based updates (Var, Ent, SND). Updates
occur when the uncertainty metric decreases, with the
meta interval as the max interval, following DRU [26].

3) Proposed DTUI. The proposed updating mechanism
where the meta interval corresponds to δ in Eq. (13).

Following prior work [26], we set the meta interval to
5 for uncertainty-based updates (Var, Ent, SND). As shown
in Tab. X, both DTUI and uncertainty-based strategies out-
perform the vanilla Mean Teacher, with DTUI yielding the
best results. However, uncertainty-based methods show limited
gains unless combined with techniques like DRU’s student
retraining [26], possibly due to noisy background queries and
unstable proposals in DETR. We also observe that overly
large or small intervals offer minimal benefits, highlighting
the importance of a balanced update frequency in DTUI.
Additionally, Fig. 5(e) shows that DTUI is robust to small

changes in ε, which controls interval growth. Performance
only degrades when ε is too large (e.g., 2), delaying necessary
teacher updates.

7) Objectness Estimation Strategy: To assess the superior-
ity of OSSR under different objectness estimation strategies,
we conduct an ablation study comparing the following
approaches:

1) Backbone: Utilizing backbone features alone.
2) E: Utilizing encoder features alone.
3) E+AQ: Utilizing encoder features fused with assigned

queries (i.e., queries matched with pseudo-labels via
bipartite matching).

4) E+Q: Utilizing encoder features fused with all queries.
As shown in Fig. 4(a), the highest performance is achieved
when using encoder features fused with assigned queries
(E+AQ). This result highlights the effectiveness of objectness
estimation and query-fused feature weighting. Addition-
ally, these quantitative findings complement the visualization
results in Fig. 7, further validating the impact of our approach.

8) Pseudo-labeling Threshold: We also conduct an ablation
study on the pseudo-labeling threshold cthresh, which is set
to 0.3 in our main experiments. As shown in Fig. 5(f),
both excessively low and high thresholds lead to suboptimal
detection performance, while a threshold around 0.3 yields the
best results. This finding is consistent with DRU [26], which
also uses a 0.3 threshold for DETR-based pseudo-labeling.

9) Memory Bank in CMMB: We conduct ablations on both
memory bank size and update strategy. Sizes range from 0
(disabling the memory bank) to several capacities per class,
and update strategies include FIFO, random replacement (RR),
and center-guided replacement (CGR), where a new feature
replaces the entry farthest from the current class center. As
shown in Fig. 4(e) and (f), moderate sizes (around 100–200
entries) give the best mAP, while very small or very large
sizes slightly reduce performance. Among update strategies,
FIFO performs best, with RR and CGR yielding slightly
lower results. These findings suggest that a balanced memory
size and stable FIFO updates provide the most effective
composition for contrastive learning in CMMB.

10) Multi-scale Encoder Feature Fusion: To assess the
impact of multi-scale encoder feature fusion in OSSR, we
conduct an ablation study on different fusion strategies using
layers 3, 4, 5. We experiment with fusing features from indi-
vidual layers as well as multiple layers. As shown in Fig.
4(c), (1) reweighting based on lower-layer encoder features
leads to suboptimal performance, as they emphasize high-level
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TABLE V

RESULTS OF CROSS-SCENE ADAPTATION. “SF” DENOTES SOURCE-FREE. “V” AND “R” IN BACKBONE REPRESENT VGG AND RESNET, RESPECTIVELY.
“FRCNN” STANDS FOR FASTER R-CNN. FOR EACH COLUMN, WE BOLD THE BEST AND UNDERLINE THE SECOND-BEST RESULTS SEPARATELY

FOR NON-SOURCE-FREE AND SOURCE-FREE APPROACHES (EXCLUDING ORACLE)

TABLE VI

RESULTS OF CITYSCAPES-TO-ACDC ADAPTATION ON FOUR DIVERSE
WEATHER CONDITIONS. “SF” DENOTES SOURCE-FREE. “FRCNN”

STANDS FOR FASTER R-CNN. WE BOLD THE BEST AND
UNDERLINE THE SECOND-BEST RESULTS FOR SOURCE-FREE

APPROACHES

semantics over object-level attention. While fusing layer 5 with
others yields only marginal gains, it confirms that multi-layer
fusion provides more comprehensive features than a single
layer, ultimately enhancing overall performance.

11) Effectiveness Over Different Detectors: To further
illustrate the DETR-specific design, we directly transfer our
method to Faster R-CNN [3] by replacing query and encoder
features with RoI and backbone features. As shown in Tab. XI,
the modules yield only marginal or even degraded gains
compared to the clear improvements on DETR. This stems
from our DETR-specific design: OSSR and UQFD rely on
query–encoder fused objectness, while RoI features lack the
global semantic context of DETR queries, weakening supervi-
sion and distillation; CMMB also underperforms as it is built
around learnable queries rather than local RoIs. Moreover,
Hungarian matching on thousands of RPN proposals incurs
extra cost and instability. These findings underscore the query-
centric nature of our approach and suggest that a promising
direction for future work is to generalize the key ideas and
designs of DETR-based SFOD so that they can be effectively
adapted to a broader range of detector architectures.

F. Visualization Study

To further illustrate the effectiveness of our method, we
present a visualization study in this section.

1) Detection Result Visualization: To showcase effective
domain adaptation, we visualize detection results from three
settings: (1) Source-only, (2) FRANCK, and (3) Ground
Truth. As shown in Fig. 6, our method significantly improves
both object localization and classification in the target domain,
reducing false positives and enhancing detection quality.

2) Object Attention Visualization: To illustrate the impact
of query-fused objectness scores on encoder features, we com-
pare OSSR objectness attention generation methods, including
“E”, “E+AQ”, and “E+Q”, as outlined previously. To better
visualize the weight distribution, we also subtract the scaled
attention score of “E+Q” from 1, since Eq. (8) assigns high
weights to low attention scores.

As shown in Fig. 7, domain shifts often lead encoder
features to over-focus on background regions. Query fusion
mitigates this by redirecting attention toward objects, with
“E+AQ” showing the most improvement. However, treat-
ing all queries equally (“E+Q”) can suppress attention to
foreground and hard-to-detect objects, consistent with find-
ings in DETRDistill [72]. Our reweighting strategy corrects
this by assigning higher weights to under-recognized areas,
addressing both foreground-background and easy-hard sample
imbalances. This improves feature discriminability, as further
validated in Fig. 4(a).

G. Limitation

While our method achieves state-of-the-art performance, it
has limitations that point to future directions. First, although a
lower confidence threshold works well across varied scenarios,
it may underperform in precision-critical cases. A dynamic
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TABLE VII

PERFORMANCE COMPARISON OF DIFFERENT BACKBONES. WE USE DEFORMABLE DETR AS THE BASE DETECTOR. WE BOLD THE BEST AND
UNDERLINE THE SECOND-BEST RESULTS SEPARATELY FOR EACH BACKBONE

TABLE VIII

PERFORMANCE COMPARISON OF DIFFERENT DETR VARIANTS. WE USE RESNET-50 AS THE BACKBONE. WE BOLD THE BEST AND UNDERLINE THE
SECOND-BEST RESULTS SEPARATELY FOR EACH KIND OF DETECTOR

TABLE IX
ABLATION STUDY ON COMPONENT ANALYSIS. THE REPORTED Time

DENOTES THE PER-ITERATION PROCESSING TIME, AND ∆Time INDI-
CATES THE RELATIVE INCREASE COMPARED WITH THE MT+DTUI

BASELINE

threshold, starting low to mine potential objects and increasing
later to enhance precision, could better balance recall and

TABLE X
ABLATION STUDY ON DYNAMIC MT(MEAN TEACHER) UPDATING ANAL-

YSIS. “VAR”, “ENT”, AND “SND” DENOTE LOGITS VARIANCE,
PREDICTION ENTROPY, AND SOFT NEIGHBORHOOD DENSITY,

RESPECTIVELY, AS STATED IN SEC. IV-E. MI REPRESENTS
META INTERVAL

precision. Second, with the rise of vision foundation models
(VFMs) like CLIP [98], incorporating VFM-guided cues (e.g.,
text-image similarity for refining memory bank samples) could
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Fig. 6. Visualization of detection results before and after adaptation and gt labels. From top to bottom: Source-only results, FRANCK results, and ground
truth. We show both Cross-weather adaptation results and Synthetic-to-real adaptation results in this experiment.

Fig. 7. Visualization of object attention visualization with different strategies. “E” is for Encoder feature only, “E+AQ” is for fusion of Encoder feature and
assigned query features, and “E+Q” is for fusion of Encoder feature and all query features. In the proposed method, we assign high weights to low E+Q
attention scores and vice versa.

TABLE XI
ABLATION STUDY ON DIFFERENT MODULE COMBINATIONS OVER DIF-

FERENT DETECTORS

further enhance contrastive learning, especially for applica-
tions less constrained by computation.

V. CONCLUSION

In this paper, we tackle the challenge of source-free domain
adaptive object detection (SFOD), specifically focusing on
adapting source-pre-trained DETR networks to target domains
without access to source data. To this end, we propose
FRANCK, a novel framework that fully exploits DETR-
specific features by incorporating four key components: (1) an
Objectness Score-based Sample Reweighting (OSSR) module,
(2) a Contrastive Learning with Matching-based Memory Bank
(CMMB) module, (3) an Uncertainty-weighted Query-fused

Feature Distillation (UQFD) module, and (4) an enhanced
self-training pipeline with Dynamic Teacher Updating Interval
(DTUI). Our method achieves state-of-the-art performance,
surpassing previous SFOD approaches across multiple widely
used benchmarks. For future work, we aim to extend our
framework to more realistic scenarios, such as multi-source
adaptation. We hope this work provides valuable insights and
inspiration for advancing DAOD and SFOD, further contribut-
ing to the broader research community.
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