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Abstract—This paper introduces a multimodal agent-based
app automation testing framework, named Test-Agent, built on
the Large Language Model (LLM), designed to address the
growing challenges in mobile application automation testing.
As mobile applications become more prevalent and emerging
systems like Harmony OS Next and mini-programs emerge,
traditional automated testing methods, which depend on man-
ually crafting test cases and scripts, are no longer sufficient for
cross-platform compatibility and complex interaction logic. The
Test-Agent framework employs artificial intelligence technologies
to analyze application interface screenshots and user natural
language instructions. Combined with deep learning models,
it automatically generates and executes test actions on mobile
devices. This innovative approach eliminates the need for pre-
written test scripts or backend system access, relying solely
on screenshots and UI structure information. It achieves cross-
platform and cross-application universality, significantly reducing
the workload of test case writing, enhancing test execution
efficiency, and strengthening cross-platform adaptability. Test-
Agent offers an innovative and efficient solution for automated
testing of mobile applications.

Index Terms—App Automation Testing, Large Language
Model, Agent

I. INTRODUCTION

With the popularity and rapid development of mobile ap-

plications, automated App testing has become one of the

key technologies to ensure application quality and improve

development efficiency. However, with the emergence of new

mobile systems (such as HarmonyOS Next) and new forms

of application such as applets, automated testing faces new

challenges.These challenges are not only cross-platform com-

patibility issues, but also complex interaction logic, state

management, and requirements for application security and

privacy protection [1]. In recent years, with the diversifica-

tion of mobile devices, operating systems and development

frameworks, the complexity of automated testing technologies

has continued to increase, and the limitations of existing

methods have become more and more significant [2], [3].

Traditional automated app testing methods rely on a large

number of manually written test cases and scripts, requir-

ing complex adaptation and maintenance between different

devices and operating systems [4]. This approach is difficult

to respond effectively to demand in the face of increasingly

* Corresponding author.

complex application ecosystems. To this end, many researchers

have proposed model-based testing methods that automatically

generate test cases by building an abstract model of the

application. For example, the MobiGUITAR framework, which

has received much attention in recent years, can explore gen-

erative models and automatically generate test cases through

the GUI [5].In addition, with the continuous development

of artificial intelligence technology, AI-driven test generation

tools have gradually become a hot research direction. Such

tools automatically generate test cases by learning applica-

tion behavior patterns, such as automated testing based on

reinforcement learning [6], [7], and test generation methods

combining machine learning and deep learning [8]. Although

AI technology shows great potential in the field of automated

testing, current methods still have certain limitations. Many

AI-driven testing tools rely on predefined models and rules,

and therefore underperform when dealing with cross-platform

compatibility, complex interaction scenarios, and edge situ-

ations [9]. In recent years, some researchers have tried to

solve these problems by introducing more intelligent context

understanding and adaptive test generation strategies [10], but

still face challenges when dealing with emerging application

forms such as small programs [11]. To solve these prob-

lems, we propose a multi-modal agent App automated testing

framework based on LLM (Large Language Model) - Test-

Agent. This framework combines the large language model

and artificial intelligence technology [12] to realize intelligent

understanding of applications and automated testing. Unlike

traditional methods, Test-Agent does not need to write test

scripts in advance, but by analyzing the screenshot of the ap-

plication interface and the user’s natural language instructions,

using deep learning models to generate corresponding test

behaviors, and automatically execute them on mobile devices.

This approach does not require access to the back end of

the system, and can be tested solely on screen shots and

UI structure information, demonstrating high cross-platform

and cross-application versatility. Test-Agent framework shows

significant innovation and advantages in the following aspects:

• No need to pre-write test cases: · Traditional automated

testing usually requires test engineers to write a large

number of test scripts and use cases to cover a variety of

20
24

 IE
EE

 4
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 D

ig
ita

l T
w

in
s a

nd
 P

ar
al

le
l I

nt
el

lig
en

ce
 (D

TP
I)

 | 
97

9-
8-

35
03

-4
92

5-
2/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

D
TP

I6
13

53
.2

02
4.

10
77

89
01



610

user scenarios [13]. Test-Agent framework makes use of

the powerful semantic understanding ability of LLM, and

can directly analyze the test objectives and operation steps

from the user’s natural language instructions, avoiding

the tedious test case writing and maintenance work, and

greatly improving the test efficiency.

• Cross platform and cross-application universality:
The Test-Agent framework does not rely on any system

backend and is based only on mobile device screenshots

and UI structure information. This design makes the

framework extremely versatile and can run seamlessly

on different operating systems and various mobile appli-

cations, reducing complex adaptation efforts [14].

• Reduce professional skill requirements: · Traditional

automated testing usually requires test engineers with

programming ability and test scripting skills [15]. Test-

agent framework only needs users to input natural lan-

guage Test instructions to complete automated testing of

mobile applications, which greatly reduces the require-

ments for professional skills.

• Automated Testing for Mini Programs: · As an emerg-

ing form of mobile application, small programs are nested

inside host applications such as wechat, so they have

the limitation of the operation environment, and the

compatibility and permission issues of the client need

to be considered. At the same time, the page structure

and interaction logic of small programs are complex, and

the element positioning is difficult. Traditional automated

testing methods are not sufficient to support them. Test-

Agent framework based on screen capture and UI struc-

ture information, through LLM multi-modal understand-

ing ability, can accurately understand the interaction logic

of small programs, generate appropriate Test behavior,

providing a new solution for the automated testing of

small programs.

II. THE MAIN METHOD FOR AUTOMATED TESTING OF

CURRENT APPS

A. Based on Appium framework

Appium is an open-source automation testing tool for

mobile applications on Android and iOS. It supports native,

hybrid, and mobile web apps without requiring changes to the

app’s code. Appium is compatible with multiple programming

languages, making it accessible and versatile.Supports multi-

ple programming languages for writing test scripts, offering

control and customizationBut setting up Appium for the first

time can be challenging, especially for those unfamiliar with

the environment or mobile automation in general. Configuring

the necessary drivers, managing dependencies, and setting up

the testing environment can require a significant amount of

time and expertise [16].

B. Based on Espresso framework

Espresso is a powerful and reliable testing framework for

Android applications, offering tight integration with the An-

droid ecosystem, fast execution, and a user-friendly API. Since

Espresso is specifically designed for Android, so it cannot be

used for cross-platform testing. This limitation means separate

frameworks are needed for iOS or other platforms.While basic

tests are easy to write, more complex scenarios may require a

deeper understanding of Espresso’s API and Android internals,

which can be challenging for beginners. [17].

C. Based on XCUITEST framework

XCUITest is a powerful and efficient UI testing framework

for iOS applications, offering deep integration with Xcode,

high reliability, and fast execution. But XCUITest is limited

to iOS and requires Xcode to run, which restricts its use to ma-

cOS environments and makes it unsuitable for cross-platform

testing. Additionally, as a white-box testing framework, it

requires access to the app’s source code, which may not be

feasible for external testing scenarios. While basic tests are

straightforward, more complex interactions can have a steep

learning curve, particularly for those new to iOS testing [18].

D. Robot Framework + Appium

The integration of Robot Framework with Appium provides

a powerful solution for automating mobile application testing

across Android and iOS platforms [19]. This combination

leverages the readability and maintainability of keyword-

driven tests with the cross-platform capabilities of Appium.

The combination of Robot Framework and Appium can in-

troduce complexity in setup and configuration, especially for

beginners. The initial learning curve for understanding how to

effectively use keywords, integrate with Appium, and manage

dependencies can be steep.some advanced mobile-specific in-

teractions may require custom keywords or additional scripting

[20].

E. GUI Test

Vision-based mobile app GUI testing offers a promising

advancement by enhancing the robustness and flexibility of

traditional GUI testing methods [21]. However, it does not

eliminate the need for writing and maintaining test scripts,

which can still be complex and resource-intensive.it still

requires ongoing script maintenance and updates, particularly

as the app evolves. It’s evident that existing mobile app

automation testing methods have several limitations. These

include the need for extensive script maintenance, challenges

with cross-platform compatibility, and the complexity of setup

and configuration. These issues highlight the necessity for a

more intelligent, adaptable, and universal automation testing

solution—one that can seamlessly handle diverse UI changes,

reduce the need for manual intervention, and offer robust

performance across different platforms and devices. Such a

solution would significantly improve the efficiency and effec-

tiveness of mobile app testing, meeting the growing demands

of modern software development. .

III. FRAMEWORK DESIGN AND IMPLEMENTATION

The Test-Agent framework is divided into five modules.
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Input Processing

Visual Perception

Interaction Analysis

Test Execution

User input

Result Analysis

prompts

ScreenShot

Element tagging

Multimodal analysis

Decision-making

Click+Slide+Text

Back+Finsh

Result analysis

Report generation

Fig. 1. Example of the overall structural diagram.

A. Input processing module

The module receives user input natural language instructions

through a natural language parser, and uses the sentence vector

generation technology of these advanced models to deeply

understand the overall semantics of the instructions. Then,

through named entity recognition (NER) technology [22], the

model can identify key entities in the instruction, such as

function names, data fields, operation objects, etc., which are

the basic elements constituting the test steps. The model then

uses its learning of large amounts of text data, combined with

intent classification algorithms, to analyze and understand the

user’s true intent. Based on these understood and identified

key entities, the model translates natural language instructions

into a series of continuous, logically clear test steps. These

steps might include opening a screen, entering specific data,

performing an action, verifying that the results are as expected,

and so on.

B. Visual perception module

This module is responsible for extracting the screenshot and

UI structure information from the mobile device, extracting the

elements to sort and tag, and then uploading the screenshot

to the LLM service. · Visual element recognition: This com-

Fig. 2. Example of the overall structural diagram.

ponent utilizes computer vision technologies such as object

detection and image segmentation to analyze screenshots and

automatically recognize various interactive elements on the

interface, such as buttons, input boxes, text, etc. · Screen-

Shot: Capture screenshots using adb command. · Pretreat-

ment: Adjust the image size, convert to grayscale, and use

Gaussian filtering to remove noise,Weighted average method

can be used. Gray=0.299×Red+0.587×Green+0.114×Blue ·

Edge detection: Using edge detection algorithms to identify

edges in images. · Color segmentation: Segmenting an image

into different regions based on color differences. · Element

extraction: Extract UI elements by combining edge detection

and color segmentation results. · Element Collection: Store the

extracted elements in a data dictionary. · Traverse Sorting:

Traverse the collected elements and sort them according to

specific positions · Element tagging: Assign unique identifiers

to sorted elements. Finally, upload the marked images to the

interaction analysis module.

C. Interaction analysis module

The interactive analysis module is the core part of the

framework. Based on the large language model technology

with multi-modal capability, it analyzes the application inter-

face screenshot and the natural language instructions input

by users, identifies and analyzes the interface elements and

their interaction logic, and finally outputs the execution action

instructions. Specifically, it includes three important parts [23],

[24]:

• Visual element recognition: This component utilizes com-

puter vision technologies such as object detection and

image segmentation to analyze screenshots and auto-

matically recognize various interactive elements on the

interface, such as buttons, input boxes, text, etc.

• Semantic understanding: This component utilizes natu-

ral language processing technology to perform seman-

tic analysis on user input instructions and extract key

interaction objects, actions, and other information. By

combining the outputs of these two components, we can

construct an interaction model for the application inter-

face, including interface elements and their attributes, as

well as the logical relationships between elements. This

provides important input for subsequent test behavior

generation.

• Instruction output: This component utilizes Prompt

prompts to output corresponding action instructions and

generate corresponding test steps, such as clicking, slid-

ing, and other operations.

D. Test execution module

This model utilizes deep reinforcement learning technol-

ogy to automatically generate corresponding test behavior

sequences. The block receives the test steps generated by the

user interaction analysis module and automatically performs

corresponding operations on the mobile device, such as click-

ing, sliding, etc., through the ADB tool.
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E. Result analysis module

This module monitors the execution process, collects and

analyzes the results of each step, discovers and records prob-

lems and exceptions that occur during the testing process, takes

screenshots of the exception interface, and generates detailed

test reports.

The entire testing process is as follows:

Fig. 3. Entire test flow chart.

Users input natural language directives, such as ”testing the

ordering function of a certain external app.” Input processing

module: Natural language conversion directives, decomposed

into response steps:

• Start the application.

• Browsing and selecting merchants.

• Browsing and selecting delicious food.

• Click to purchase.

This process is represented by the following formula:

F = {S,A, T,R}

-S represents the current state, including screenshots and UI

structure information

-A represents executable test actions, such as clicking,

sliding, etc

-T represents a state transition function that maps the current

state and test action to the next state

-R represents a reward function used to evaluate the effec-

tiveness of test actions

The goal of this framework is to automatically generate the

optimal test sequence by maximizing the reward function R:

Max a1, a2, ..., anR(s0, a1, s1, a2, ..., sn)

Where s0 represents the initial state, ai represents the ith
test action, and si represents the ith state.

To achieve this goal, we adopted a method based on the

Large Language Model (LLM) to convert natural language

instructions into corresponding test action sequences, which

can be represented as:

p(ai|si, instruction) ∞ exp(LLM(si, instruction, ai))

Among them, instruction represents the natural language

instruction given by the user, and

(p(ai|si, instruction))
represents the probability of executing test action ai in the

current state si and instruction. By iterative executing test

actions and adjusting the LLM model based on feedback, an

efficient automated testing solution can ultimately be obtained.

The key advantage of this framework is that it utilizes

artificial intelligence technology to achieve intelligent under-

standing and automatic testing of mobile applications, without

the need to write a large number of test scripts in advance,

greatly reducing the workload of test case writing. At the same

time, it does not rely on underlying system APIs, only requires

screenshots and natural language instructions, and has good

cross-platform adaptability.

We model the testing process as a Markov Decision Process

(MDP), with the current interface screenshot as the state and

various testing actions (click, slide, etc.) as the actions, to

maximize testing effectiveness.

Specifically, we define the following MDP model:

States = {screenshot, interactionmodel}

Actiona = {Click, swipe, input, ...}

Reward function R(s, a) = f(coverage, errordetectionrate, ...)

Then, using reinforcement learning algorithms such as

DQN, an intelligent agent Test-Agent is trained, which can

select the optimal test action based on the current state s and

user instructions, and ultimately generate a complete sequence

of test behaviors.

During the training process, we also introduced heuristic

Prompt prompts to guide the Test-Agent in learning more

reasonable and efficient testing strategies. For example, ”Based

on user instructions, interface elements should be located first,

followed by clicking, inputting, and other operations, and

finally checking whether the results meet expectations.” By

continuously iterating and optimizing, Test-Agent can learn

the best testing plan for different application scenarios.

IV. EXPERIMENTAL EVALUATION

To verify the effectiveness of the framework, we conducted

detailed testing and evaluation on multiple real mobile appli-

cations.

A. Experimental setup
Application and Scenario Selection:
The experimental equipment was selected from different

manufacturers, systems, versions, and processor architectures
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to cover the current mainstream usage scenarios as much as

possible.Specific scenarios include:

A. Experimental setup

TABLE I
EXPERIMENTAL EQUIPMENT PARAMETERS.

Device Name System Version Processor
google pixel8 Android 12 ARM

iPhone 12 IOS 14 ARM
xiaomi 10 Android 11 ARM

huawei mate60 HarmonyOS 4.0 ARM
Samsung galaxy 10 Android 12 ARM
Xiaoyao Simulator Android 12 X86

Genymotion Android 10 X86

The applications chosen include:

Social Media App: Testing common functionalities such as

user login and message sending.

E-commerce App: Testing actions like searching for prod-

ucts, adding to cart, and making payments.

Utility App: Testing button responses and settings page

modifications.

These applications are highly interactive, covering a wide

range of common app functionalities to provide a well-rounded

assessment of the testing frameworks.

The test scenarios include:

- User login/logout

- Page navigation and element clicking

- Data input and validation (e.g., text fields, buttons)

- Data processing and display (e.g., lists, charts).

These scenarios simulate real user interactions, ensuring the

experiment reflects typical app testing conditions.

Evaluation Metrics:
To objectively evaluate the performance of each framework,

the following criteria were used:

Test case creation time: The time required to write and

complete the test cases (measured in hours or minutes).

Lines of code (LOC): The number of lines needed to

implement the full test case.

Code readability: Assessed by external experts, focusing on

simplicity and maintainability.

Framework adaptability: The ability of each framework to

support both iOS and Android platforms.

These metrics collectively measure developer workload,

framework usability, and cross-platform adaptability, providing

a comprehensive evaluation.

Test Case Development Process:
For each application and scenario, the same test cases were

designed and implemented in each framework. The devel-

opment process was conducted under identical conditions,

including the same development environments and hardware,

ensuring fairness. The developers involved in the process had

the same level of experience to guarantee that each framework

was used optimally. The development process followed these

steps:

Test requirements definition: Identifying core functionality

to be tested for each app.

Writing the test cases: Implementing the test cases using

each framework.

Test execution: Running and recording the performance of

the test cases.

Interaction Methods:
During test case development, the developers used the

standard development tools for each framework (e.g., Android

Studio, Xcode), adhering to the official documentation and

best practices. When encountering issues, developers were

allowed to refer to official resources or collaborate within the

team, but no external assistance was permitted, simulating a

real-world development environment.

B. Experimental result

The results in terms of test case creation time, lines of code,
and other criteria are summarized in the table below:

TABLE II
WRITING TEST CASES TAKES TIME (HOURS)

Framework Test Case Creation Time Lines of Code Adaptability
Appium 3 265 Android/iOS
Espresso 3.2 290 Android-only
XcuiTest 3.0 220 iOS-only

Robot Framework 2.9 205 Platform-dependent
GUI 2.0 173 Platform-dependent

Test-Agent 0.1 2 All platforms

1) Test case writing workload: From the data, it is evident

that the Test-Agent significantly outperformed the existing

mainstream frameworks in terms of both time and lines of

code. The new framework completed the test cases in just

10 minutes with 50 lines of code, whereas other frameworks

required several hours and hundreds of lines of code. Appium,

though cross-platform, took the longest time and required

the most lines of code due to its comprehensive API, while

Espresso and XCUITest were restricted to their respective

platforms (Android and iOS), limiting their flexibility. In

terms of code readability, external experts evaluated Test-

Agent code as more concise and intuitive, making it easier to

maintain. Appium’s complexity, on the other hand, resulted in

lower readability due to its extensive APIs and detailed setup.

Regarding adaptability, Test-Agent supported both Android

and iOS platforms, making it a versatile solution, whereas

Espresso and XCUITest were limited to specific platforms,

reducing their usability in cross-platform projects.

TABLE III
WRITING TEST CASES CODE LINES

login function purchase product post function
Appium 92% 91% 93%
Espresso 93% 92% 93%
XcuiTest 92% 93% 92%

Robot Framework 92% 87% 93%
GUI 91% 89% 92%

Test-Agent 97% 97% 96%

2) Test task success rate: There are certain cases of testing

process failures using current mainstream methods, and the

success rate of Test-Agent testing tasks is significantly higher
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than other app automation testing methods, with very few

failures.

Based on the experiment, we reached the following conclu-

sions:

Dramatic improvement in development efficiency: Test-

Agent eliminates the need for writing test cases, signifi-

cantly reducing development time and code lines compared

to mainstream frameworks, particularly appealing for projects

requiring rapid iteration. Outstanding cross-platform compat-

ibility: Test-Agent supports all major mobile systems includ-

ing Android and iOS, streamlining efforts and enhancing

development efficiency, in contrast to limited cross-platform

capabilities of frameworks like Espresso and XCUITest. Low-

ered professional skill requirements: The straightforward code

structure simplifies the use and maintenance of Test-Agent,

significantly lowering the skill set needed for its operation.

V. CONCLUSION AND FUTURE WORK

This article proposes a multimodal agent automation testing

framework called Test-Agent based on the Large Language

Model (LLM), which utilizes artificial intelligence technology

to achieve intelligent understanding and automatic testing of

applications. This framework does not require a large number

of pre-written test scripts, but instead generates correspond-

ing test behaviors using deep learning models by analyzing

application interface screenshots and user natural language in-

structions, and automatically executes them on mobile devices.

In the future, we will further optimize the framework, im-

prove its robustness and intelligence level, enhance its ability

to handle complex interaction logic and state management and

explore its application in a wider range of scenarios, providing

a new solution for the field of mobile application automation

testing.
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