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Abstract—In the absence of an official statement about a rumor, people may expose the truth behind such rumor through their
responses on social media. Due to the varying relevance of responses in exposing hidden suspicious points within a rumor claim, it is
crucial to prioritize those with higher relevance, rather than considering every responding tweets. As for the multi-modal rumor
detection, an effective approach for evaluating relevance is aligning responses with the different modalities of the rumor claim in a
fine-grained manner. However, owing to the substantial volume of response tweets, it is both costly and redundant to align all
responses with the multi-modal claim. In this paper, we propose a novel two-stage model, termed Focal Reasoning Model (FoRM), to
select critical responses for multi-modal rumor detection. More specifically, our FoRM consists of two primary elements: coarse-grained
selection and fine-grained reasoning. The coarse-grained selection component employs post-level features of responses to initialize a
relevant score for each. Based on these scores, we preserve the responses with higher scores as the candidate ones for subsequent
reasoning. Within the fine-grained reasoning component, we develop a relation attention module to investigate fine-grained
relationships, specifically token-to-token and token-to-object connections, between the preserved responses and the multi-modal claim,
with the goal of discovering valuable clues. Extensive experiments have been conducted on three real-world datasets, and the results
demonstrate that our proposed model outperforms all the baselines.

Index Terms—Multi-modal Rumor Detection, Relevant Response, Fine-grained Relation.

✦

1 INTRODUCTION

SOCIAL media has become a popular and important way
for people to gather and share information. A recent sur-

vey points out that more than 70% Americans communicate
with others and access news content via social media1. Such
hyper-connected social network not only makes information
spread faster but also provides an ideal environment for
the spread of misinformation [1]. Among the information
in circulation, rumor is the unverified information that
could influence public decisions and further lead to social
disruption. For instance, rumors would mislead the voters
during the 2016 U.S. election [2] and affect the willingness of
the public to receive the COVID-19 vaccine [3]. Therefore, it
is necessary to detect rumors for providing a better network
environment and decreasing the detrimental public effects.

The goal of rumor detection is to verify the truthfulness
of a given claim. To achieve this goal, fact-checking websites
attempt to invite domain experts to confirm the suspected
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social-media/

Please stop sending pictures of the special forces!

Special Forces usually don't have Riot Helmets.

REMEMBER MUNICH! Don't show police 
operations. Don't give clues to the terrorists.

Keeping the two boys up to date?

Well done ! Now terrorists may know 
that special forces are on the roof .......

stop trying to block their freedom of 
speech and information

This is not freedom of speech, that is 
irrespect toward policer's work. I don't want 
them to be killed.

freedom of speech; information is not infinite. 
It stops when it endangers people or obstructs 
justice!

people should realise they have the freedom of 
speech and THAT freedom has limits. Respect 
those limits

What kind of journalism is this? 
Stop sending pictures.

Fig. 1. A conversation constructed with a multi-modal claim and corre-
sponding responses. The tweets in the red box and blue box are irrele-
vant and unhelpful for verifying the claim respectively. The valuable clues
should be captured with the fine-grained reasoning of the responding
tweets and the multi-modal claim.

claim. Such manual method is time-consuming and low-
coverage, especially on social media, where produces huge
amounts of data every day. In order to automatically verify
a claim, some researchers propose to retrieve the relevant
evidence from Wikipedia and extract key clues [4], [5], [6].
However, some claims on social media, especially break-
ing news, report newly emerged events that could not be
confirmed from existing databases. These claims always
attract public attention and provoke related discussions.
Studies [7], [8], about the relevant discussion, discovered
that the user responses would provide valuable clues for
finding out the truth behind an unverified claim. Inspired
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by this discovery, many response-based methods have been
proposed and achieved good detection accuracy in rumor
detection [9], [10], [11], [12], [13], [14], [15], [16].

The majority of response-based methods concentrate
on modeling textual information. Early research [9], [10],
[11], [17] expended considerable effort on crafting features
from social content, user characteristics, and information
propagation to learn rumor-indicative clues. However, these
hand-crafted features consist solely of statistical informa-
tion, such as the number of words in a tweet and the fraction
of tweets containing a question mark. They lack the seman-
tic depth of textual content and fall short of fully repre-
senting the complicated rumor-indicative features. Recently,
deep-learning approaches have been proposed to leverage
the temporal [12], [13], [18], structural features [19], [20],
[21] and content features [22] of user interactions within a
conversation thread. Nevertheless, these methods overlook
the verification of multi-modal rumor claims, which have
already emerged as central elements within social media
platforms [23], [24]. To utilize user responses in verifying
the multi-modal claim, several multi-modal rumor detection
methods [14], [15] are proposed. For instance, Zhang et
al. [14] model the multi-modal claim and all responses to
construct an event memory with event-invariant features.

Most multi-modal methods mainly fuse different modal-
ities into a post-level representation and aggregate the claim
with all the response tweets. Recently, several methods [25],
[26] propose to leverage each modality of the multi-modal
claim to fuse the responses/evidences with different atten-
tion scores. However, they both leverage the global repre-
sentation to evaluate the relevance of each response, and
ignore their fine-grained features. For a multi-modal rumor
claim, the focus of a user may be on special words in the
text content or an object in the image. Therefore, to identify
the relevant responses that critical to verify multi-modal
claim, an effective approach is to align responses with the
different modalities of the rumor claim in a fine-grained
manner. As shown in Fig. 1, based on the words “special
forces” and the place “on the roof of a building” in the claim,
we locate that the person in the image is a special force.
The response, “Special Forces usually don’t have Riot Helmets”,
connecting to the claim with “Special Forces” is inconsistent
with the state in the image (the special force wears a riot
helmet), which demonstrates the claim is a false rumor.
Without the reasoning by the fine-grained interactions, we
could not locate the this relevant response. However, due to
the substantial volume of response tweets, it is costly and
redundant to model all the responses and the multi-modal
claim in the fine-grained way, and then select the relevant
ones. In Fig. 1, the response in the red box, “Keeping the
two boys up to date?”, is irrelevant to the multi-modal claim.
In addition, tweets in the blue box are talking about the
freedom of speech, which may not provide any evidence
about the truthfulness of the claim. It may be unnecessary
to conduct fine-grained reasoning for these response tweets.

In this paper, we propose a novel two-stage framework,
termed Focal Reasoning Model (FoRM), to verify the multi-
modal rumor. More specifically, our FoRM mainly contains
two main components: coarse-grained selection and fine-
grained reasoning. The coarse-grained selection component
employs post-level features of responses to initialize a rel-

evance score for each. Based on these scores, we preserve
the responses with higher scores as the candidate ones
for subsequent reasoning. Within the fine-grained reason-
ing component, we develop a relation attention module
to investigate fine-grained relationships, i.e., token-to-token
and token-to-object connections, between the preserved re-
sponses and the multi-modal claim, with the goal of dis-
covering valuable clues. To improve the effectiveness of the
coarse-grained selection, we firstly formulate a selection loss
to supervise the coarse-grained selection component, aiming
to maximize the probability of the presence of relevant
responses within the candidate set. Then, we propose to
jointly train these two components, which could refine the
scores of the coarse-grained selection based on the feedback
of the fine-grained reasoning. Extensive experiments have
been conducted on three real-world datasets, and the results
demonstrate that our proposed model surpasses all baseline
models in performance.

The contributions of this paper are as follows:

• We propose a novel FoRM for multi-modal rumor
detection, which could focus on the relevant re-
sponses by conducting the fine-grained reasoning of
the responses and the multi-modal claim.

• FoRM is designed as the two-stage framework, con-
sisting of coarse-grained selection and fine-grained
reasoning, due to the substantial volume of response
tweets. We train these two components in the end-to-
end manner, which could refine the initial relevance
scores of the coarse-grained selection based on the
feedback of the fine-grained reasoning and further
improve the effectiveness of these relevance scores.

• In coarse-grained selection, to maximize the proba-
bility of the presence of relevant responses within
the candidate set, we formulate a selection loss to
improve the effectiveness of the initial scores.

• Extensive experiments demonstrate that our FoRM
could reach better performance and focus on the
reasonable responses based on the multi-modal claim
for detecting rumors.

2 RELATED WORK

As anyone with an Internet-connected device could share
what they may be witnessing or their real-time thoughts
on social media [27], the truthfulness of this information is
always uncertain. Such unverified information, termed the
rumor, has the detrimental effect on society and individu-
als [28], [29]. Rumor detection aims to identify the veracity
of this information and attracts extensive research attention
in recent years. Based on the source of clues which are used
to verify rumors, the proposed rumor detection methods
could be categorized into three types: the claim-based, the
fact-checking, and the response-based.

The claim-based methods attempt to find the clues from
the claim, such as the inconsistency [23], [30], [31], [32]
of different modalities or the event-invariant features [33],
[34]. As attention mechanisms are effective in various multi-
modal tasks [35], [36], [37], [38], Qian et al. [23] design a con-
textual attention network to encode the multi-modal context
information hierarchically for verifying the truthfulness.
Instead of utilizing images as text supplements, Qi et al. [31]
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propose a fine-grained model to capture the inconsistency
of the entities in text and image. Inspired by adversarial
network [39], [40], [41] and domain adaption [42], [43],
EANN [33] and MDDA [34] transfer the event-invariant
features to newly emerging events.

The fact-checking methods reply on the authoritative
sources. Fact-checking websites, such as politifact.com and
snopes.com, invite domain experts to confirm the dubious
claim. To keep up with the enormous volume of generated
online information, Ciampaglia et al. [44] construct a public
knowledge graph from Wikipedia for automatically check-
ing claims. Recently, deep learning methods are applied to
retrieve the evidence from trustworthy sources and infer the
fact [4], [5], [6]. However, some claims, especially breaking
news, on social media report newly emerged events which
could not be checked from the existing database. For these
claims, the fact-checking methods may not work.

The response-based methods actually derive from the
crowd wisdom. Studies [7], [8], about the relevant dis-
cussion, discovered that the community response would
provide valuable clues for finding out the truth behind an
unverified claim. Therefore, how to utilize the abundant
information of the community response is a key research
direction. Early studies [9], [10], [11], [17], [45], [46] focus on
extracting manual features from the contents of messages,
user profiles, and diffusion patterns. For example, Castillo
et al. [9] identify four types of hand-crafted features to
characterize each topic and train a supervised classifier to
debunk rumors. However, these methods heavily rely on
intensive manual efforts and could not fully capture the
complicated rumor-indicative features with such statistics.
Then deep-learning methods are proposed to infer clues
by modelling the timeline and structure of the user inter-
actions. Timeline-based methods [12], [13], [18] concentrate
on modelling the temporal pattern of user interactions. Ma
et al. [12] leverage Recurrent Neural Networks (RNN) to
capture the temporal feature of the sequential reply stream.
To extract the high-level interaction of each part of the reply
sequence, the CNN-based framework, CAMI, is proposed in
[18]. In addition, several works [19], [47], [48] argue the user
interactions are tree-structured and propose structure-based
methods based on Tree-LSTM [49] and Transformer [50].
Specifically, for parallel processing, BCTree LSTM [47] re-
builds the conversation tree into a binary tree in that each
node is always connected with two children. To extract
better textual and structural features, Tree-Transformer [48]
is proposed and achieves a better performance for conversa-
tion trees with different depths. Recent studies [20], [51], [52]
attempt to explore both temporal and structural features. By
embedding the time delay and structural information into
the multi-head attention layer simultaneously, variants of
Transformer [20] are proposed. In contrast, conversational-
GCN [51] extracts structural and temporal features by GCN
and RNN respectively in two steps. Lao et al. [52] design
the non-linear structure learning and the linear sequence
learning to explore the temporal and the hierarchical charac-
teristic of the user interaction respectively. These approaches
have shown promising performance on applying deep
learning to rumor detection. However, these methods ignore
the multi-modal clues of the thread conversation. Hence,
multimodal fusion methods [14], [15], [25] are proposed to

fuse the textual and visual features for detecting rumors.
Zhang et al. [14] leverage the multi-modal information for a
better post representation and build event memory with the
event-invariant features of the sequential responding posts.

Instead of considering all the responding tweets in pre-
vious works, we propose to exploit valuable tweets from the
relevant responses in the fine-grained way.

3 PROBLEM STATEMENT

In this paper, we employ the textual information of respond-
ing tweets to verify the corresponding multi-modal claim.
The conversation thread of a given claim is defined as:

X = {s,R},
s = {sT , sI},
R = {r1, r2, · · · , rN},

(1)

where s is the claim, which consists of the text sT and the
image sI , R is the group of the responding tweets which
replies to the claim s. Hence, the rumor detection task is to
calculate the probability P (y|X, θ), where θ is the parameter
of rumor classifier and y is the rumor class label.

4 METHOD

In this section, we describe the proposed two-stage frame-
work, Focal Reasoning Model (FoRM), in detail. As illustrated
in Fig. 2, our model consists of three main components: a
feature encoder, coarse-grained selection, and fine-grained
reasoning. The feature encoder utilizes pre-trained models
to extract token-level and sentence-level features of the text,
as well as object-level features of the image. Subsequently,
the claim multi-modal representation is fused with the fea-
tures of different modalities in the claim. The coarse-grained
selection component employs the multi-modal representa-
tion and sentence-level features of responses to initialize a
relevance score for each response. Based on the relevance
scores, the top k responses are selected as the candidate
ones. The fine-grained reasoning component leverages a
relation attention module to model the token-to-token and
token-to-object relations between the candidate responses
and the claim for evaluating the relevance of preserved
responses and finding out the valuable clues.

4.1 Feature Encoder
As the model pretrained in a large dataset typically catches
the better semantic information, we leverage the pre-trained
models as the textual encoder and the visual encoder, to
extract the essential features of the text and the image.

4.1.1 Textual Encoder
Since BERT [53] has achieved great success in natural lan-
guage processing tasks [54], [55], we apply BERT as the tex-
tual encoder. For coarse-grained selection and fine-grained
reasoning, the main purpose of our textual encoder is to
extract the coarse-grained (sentence-level) features and fine-
grained (token-level) features of the text. We feed the claim
text sT and a responding tweet ri to BERT separately:

Hs = BERT(sT ),

Hi = BERT(ri),
(2)
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Claim

Responding tweets

Special forces stands on the 
roof of a building where a 
hostage-taking is underway

Special Forces usually 
don't have Riot Helmets.

Keeping the two boys up 
to date?

Please stop sending 
pictures of the specials...
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Fig. 2. Our proposed FoRM consists of three main components: feature encoder, coarse-grained selection and fine-grained reasoning. Specifically,
the feature encoder extracts the fine-grained (token-level and object-level) features and the coarse-grained (sentence-level) features. The coarse-
grained selection applies the cross-attention module to fuse the multi-modal feature of the claim and selects the candidate tweets with their
sentence-level features. The fine-grained reasoning leverages the relation attention module to construct a full-connected graph of the selected
tweets and the multi-modal claim for capturing their fine-grained relations.

where Hs ∈ Rdt×M and Hi ∈ Rdt×M are the token hidden
states of sT and ri respectively, M denotes the number of
tokens in sT or ri. We use the hidden state of the first token
[CLS] to obtain the representation of the sentence:

zs = σ(W tHs
0),

zi = σ(W tHi
0),

(3)

where W t ∈ Rdt×dt is the shared parameter to obtain the
sentence-level representations, σ(·) is the hyperbolic tangent
activation function (Tanh(·)), zs ∈ Rdt×1 and zi ∈ Rdt×1

denote sentence-level representations of the sT and ri;

4.1.2 Visual Encoder
VGGNet [56] and ResNet [57] are usually used as the visual
encoder in previous work [14], [15], [23]. However, they
fragment the image into a grid of regions, which barely
conform to the semantics of the image [58]. To better fuse
the semantic information of the text and the image, we apply
Faster R-CNN [59] with bottom-up and top-down attention
mechanisms as our visual encoder to detect K objects and
extract the object-level features of sI :

Os = Fast-RCNN(sI), (4)

where Os = [o1, o2, · · · , oK ] ∈ Rdi×K are the features of the
K objects in sI .

4.2 Coarse-grained Selection
Due to the openness of social media, where anyone can re-
spond to a claim, the responses have different relevance for

verifying a rumor claim. As for a multi-modal claim, the fo-
cus of a user may be on specific words specific textual in the
text or an object within the image. Therefore, it is effective to
evaluate relevance by aligning responses with the different
modalities of the rumor claim in a fine-grained manner. Yet,
given the considerable volume of response tweets, execut-
ing such fine-grained alignment for each response is both
costly and redundant. Consequently, we design the coarse-
grained selection module to select candidate responses with
the post-level representation. These chosen responses are
then utilized for conducting fine-grained reasoning with the
multi-modal claim.

4.2.1 Cross-attention Module

Instead of simply concatenating features of different modal-
ities within the rumor claim, we leverage the cross-attention
module to align the semantics between them. Specifically,
we first project the token-level feature Hs and the object-
level feature Os into the same dimensional space:

V s = σ(W oOs),

T s = σ(WhHs),
(5)

where W o ∈ Rd×di and Wh ∈ Rd×dt are the training
parameters, V s = [v1, v2, · · · , vK ] ∈ Rd×K and T s =
[w1, w2, · · · , wM ] ∈ Rd×M are projected object features and
token features respectively. Then, to obtain the relevant
objects based on the tokens, we regard each token wi ∈ T s
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as the query to calculate the cosine similarity of each object
vj ∈ V s:

ct→o
ij = cos(wi, vj). (6)

The token-aligned feature is generated by computing the
weighted sum of object-level features:

wt→o
i =

K∑
j=1

ct→o
ij vj . (7)

Finally, we combine all the token-aligned features to the
text-aligned representation st→o ∈ Rd×1:

st→o =
1

M

M∑
i=1

wt→o
i . (8)

To obtain the image-aligned representation, we regard
the object vj as the query and all the tokens in the claim text
as the key and value:

co→t
ji = cos(vj , wi),

vo→t
j =

M∑
i=1

co→t
ji wj ,

so→t =
1

K

K∑
j=1

vo→t
j ,

(9)

where co→t
ji is the cosine similarity of the object vj and the

token wi, vo→t
j denotes the object-aligned features of vj ,

so→t is the image-aligned representation of the claim.
The multi-modal representation of the claim is the

weight summation of the text-aligned representation and
the image-aligned representation:

sm = σ(W o→tso→t) + σ(W t→ost→o), (10)

where W o→t and W t→o are the training parameters, sm ∈
Rd×1 is the multi-modal representation of the claim.

4.2.2 Selection Module

In our work, the relevant response represents a tweet that
is crucial for the verification of a rumor. To narrow the
scope of relevant responses, a selection module utilizes post-
level representations to sort all responses based on their
significance in predicting rumor labels.

Since the multi-modal claim serves as the source of
community responses, it is imperative to provide the context
for each response by combining it with the claim:

A = sm1
T ◦ σ(W zZ), (11)

where A ∈ R2d×N is the tweet matrix with claim context,
1 ∈ RN×1 is set to replicate the claim to each responding
tweet, ◦ is the concatenation operator, W z ∈ Rdt×d is the
parameter, Z = {z1, z2, · · · , zN} ∈ Rdt×N . Then tweet
matrix A is fed to generate the significance scores of tweets
α ∈ R1×N by a softmax function:

α = softmax(W aA), (12)

where W a ∈ R1×2d is the training parameter. To improve
the effectiveness of such significance in identifying rumors,

we leverage it to predict the rumor label and maximize the
accuracy of the prediction:

ŷ1 = MLP(
N∑
i=0

αiz
i), (13)

where αi denotes the significance score of tweet zi, ŷ1 is the
coarse-grained prediction, the activation function and the
hidden dimension of MLP are ReLU and dh respectively.
Based on such significance scores of responding tweets, the
top k tweets R∗ = {r∗1 , r∗2 , · · · , r∗k} are selected for further
fine-grained reasoning.

4.3 Fine-grained Reasoning
Compared with all the responses, the number of preserved
responses is smaller. Hence, we design a relation atten-
tion network to model the fine-grained (token-to-token and
token-to-object) relations between the preserved responses
and the multi-modal claim. Inspired by [6], the relation
attention module constructs a full-connected graph of the
candidate tweets and multi-modal claim. The prediction
process is split into two parts: rumor prediction based on a
special node nq after information propagation P (y|nq, G, S)
and relevance prediction of such special node P (nq|G,S):

P (y|G,S) =
∑
q∈G

P (y|nq, G, S)P (nq|G,S), (14)

where the node nq in graph G denotes a selected tweet
rq ∈ R∗ and is initialized with the sentence-level features zq

and token-level features Hq , S represents the claim, which
consists of the fine-grained feature Sm = [T s ◦ V s] and the
coarse-grained feature sm.

4.3.1 Information Propagation
The information propagation aims to aggregate the informa-
tion of neighbors and generate a new representation. Hence,
we first extract the fine-grained features of neighbor node
np based on the node nq and the claim S. The token-level
features Hp of the node np is regarded as the query to
calculate the cosine similarity of the key (Hq of the node
nq and Sm of the claim):

T p, T q = σ(W pHp), σ(W qHq),

Cp←{q,s} = cos(T p, [Sm ◦ T q]),
(15)

where W p ∈ Rd×dt and W q ∈ Rd×dt are the parame-
ters, T p and T q denote the token-level features of np and
nq projected into the dimensional space d, Cp←{q,s} ∈
RM×(2M+K) is the cosine similarity matrix. Then, we obtain
fine-grained features T p←{q,s} of the neighbor np:

αp←{q,s} = softmax(Cp←{q,s}),

T p←{q,s} = αp←{q,S}[S ◦ T q] + T p,
(16)

where αp←{q,s} ∈ RM×(2M+K) denotes the significance of
the tokens in np and the tokens and objects in S. To the
end, we fuse all the token features in T p←{q,s} to obtain the
representation of np with the attention mechanism:

β = softmax(W p←{q,s}T p←{q,s})),

zp←{q,s} =
M∑
i=1

βiT
p←{q,s}
i ,

(17)
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where β ∈ R1×M denotes the weight of all the token in np,
W p←{q,s}R1×d is the training parameter, zp←{q,s} ∈ R1×d

is the representation of np,.
To generate the propagated representation of nq , we

aggregate the representations of all its neighbors. We fuse
the neighbor’s representation zp←{q,s}, the sentence-level
features zq of nq and the multi-modal feature sm of the claim
to calculate the importance of λp the neighbor node np:

λp = softmaxp(MLP(zp←{q,s} ◦ sm ◦ σ(W zzq)), (18)

where softmaxp selects the value of np from the output of
softmax function. The propagated representation vq of nq is
represented as:

vq = (
∑
p∈G

λpz
p←{q,s}) ◦ σ(W zzq). (19)

Finally, we predict the probability of the rumor label based
on the special node nq :

P (y|nq, G, S) = softmax(W y(vq ◦ sm)), (20)

where W y ∈ R4×3d is the parameter.

4.3.2 Relevance Prediction
Each node represents a responding tweet which may pro-
vide clues to verify the claim, so we use the claim to evaluate
the relevance of a node.

Given a node nq , we calculate the similarity between the
fine-grained claim features Sm and tokens in T q :

Cs←q = cos(Sm, T q), (21)

where Cs←q ∈ R(M+K)×M is the translation matrix be-
tween the multi-modal claim and the tokens in T q . Then, we
obtain the claim fine-grained features Ss←q ∈ Rd×(M+K) by
the weighted summation of all the tokens’ features in T q :

αs←q = softmax(Cs←q),

Ss←q = αs←qT q + Sm.
(22)

The relevance score of nq is predicted as:

ss←q =
M+K∑
i=1

Ss←q
i ,

P (nq|G,S) = softmaxq(W s←qss←q),

(23)

where ss←q ∈ Rd×1 is the representation vector of the
claim, W s←q ∈ R1×d is the parameter, softmaxq selects the
value of nq from the output of softmax function. Finally,
the rumor prediction by the whole graph is aggregated
following Eq. 14.

4.4 Model Training
In the proposed two-stage framework, the coarse-grained
selection module and the fine-grained reasoning module
are jointly trained. Hence, during training, the scores of the
coarse-grained selection could be refined by the feedback of
the fine-grained reasoning module. Besides, to maximize the
probability of the presence of relevant responses within the
candidate set, we formulate a selection loss for the coarse-
grained selection module to improve the effectiveness of the
initial relevance scores:

Lselection = CrossEntropy(y, ŷ1), (24)

TABLE 1
The statistics of the datasets.

Statistic TWitter15 Twitter16 Weibo
Total conversation 1490 818 4664

Total tweets 331,612 204,820 3,805,656
Unverified 374 203 0

True 372 205 0
False 370 205 2,313

Non-rumor 374 205 2,351
images 737 400 3,675

where y denotes the rumor class label, ŷ1 is the label predic-
tion based on the initial relevance scores of all responses.

As for the whole framework, we leverage the cross
entropy loss to minimizes the difference between the ground
truth y and the predicted distribution P (y|G,S):

Lreason = CrossEntropy(y, P (y|G,S)). (25)

Towards the end, the total loss function is defined as the
linear combination of the above two loss functions:

L = Lreason + βLselection, (26)

where β is a trade-off parameter.

5 EXPERIMENTS

5.1 Experimental Setting
5.1.1 Datasets
We train and evaluate our FoRM on three public datasets:
Twitter15 [60], Twitter16 [60] and Weibo [12]. Twitter15 and
Twitter16 both consist of Twitter threads, which contain a
claim and a set of responding tweets. To expand a given
claim into a multi-modal one, we crawl the corresponding
image based on its ID and textual information. These two
datasets contains four rumor labels: Unverified, Ture, False
and Non-rumor. As for Weibo, there are two labels: False
and Non-rumor, and we also crawl the corresponding image
for each claim. We follow [61] to process and split the
datasets. The statistics of the processed datasets are shown
in Table 1 and the processed data is publicly accessible2.

5.1.2 Implementation Details
In our experiments, the textual encoder inherits hugging-
face’s implementation3 and the visual encoder is imple-
mented by bottom-up-attention4. Limited by the memory
of GPUs, we set the number of responding tweets N to 100,
the max number of tokens M to 35, and the max number
of objects K to 36. We use the special token [PAD] in BERT
embedding to fill the tweets less than 100 and the tokens less
than 35. For the objects less than 36, we leverage the one-
padding to fill them. The dimension of the textual (token-
level, sentence-level) feature dt and object-level feature di
are 768 and 2048 respectively. To fuse features of different
modalities, we project them into the same dimensional space
d = 768. The hidden dimension dh of MLP is set to 128.
Finally, the model is optimized by Adam optimizer. We set

2. https://github.com/chunyuanY/RumorDetection
3. https://github.com/huggingface/transformers
4. https://github.com/peteanderson80/bottom-up-attention
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TABLE 2
Rumor verification results on Twitter15 and Twitter16 (FR: False rumor; TR: True rumor; UR: Unverified rumor; NR: Non-rumor).

Method Twitter15 Twitter16
Acc. FR-F1 TR-F1 UR-F1 NR-F1 Acc. FR-F1 TR-F1 UR-F1 NR-F1

Textual

DTC 0.454 0.355 0.317 0.415 0.733 0.465 0.393 0.419 0.403 0.643
GRU2 0.646 0.574 0.608 0.592 0.792 0.633 0.489 0.686 0.593 0.772
RvNN 0.723 0.758 0.821 0.654 0.682 0.737 0.743 0.835 0.708 0.662
PPC 0.842 0.875 0.818 0.790 0.811 0.863 0.898 0.843 0.837 0.820

dEFEND 0.839 0.872 0.849 0.813 0.820 0.859 0.818 0.936 0.860 0.820
GLAN 0.890 0.880 0.908 0.841 0.929 0.897 0.848 0.938 0.876 0.923
PLAN 0.845 0.858 0.895 0.802 0.823 0.874 0.839 0.917 0.888 0.853

Multi-modal

att-RNN 0.774 0.778 0.859 0.780 0.662 0.767 0.781 0.898 0.723 0.634
EANN 0.804 0.837 0.870 0.795 0.701 0.815 0.831 0.895 0.804 0.729
LIIMR 0.819 0.826 0.754 0.889 0.807 0.837 0.841 0.787 0.889 0.826
CAFE 0.821 0.811 0.760 0.889 0.826 0.832 0.819 0.809 0.889 0.804

MKEMN 0.836 0.819 0.905 0.793 0.829 0.848 0.842 0.903 0.860 0.787
Retrieval-based 0.848 0.877 0.881 0.794 0.832 0.870 0.886 0.920 0.851 0.817

MFAN 0.851 0.838 0.900 0.864 0.809 0.875 0.864 0.957 0.867 0.821
FoRM 0.902 0.886 0.946 0.885 0.890 0.913 0.894 0.958 0.905 0.891

the learning rate and batch size to 5e-5 and 4 respectively.
All the models is implemented based on PyTorch with a
24GB NVIDIA GeForce RTX 3090. The params of our FoRM
is 90M. For Weibo dataset, the training time is about 2 hours
and the inference time for the whole test set is about 2 mins.

5.2 Baselines
We compare the proposed FoRM with the following two
categories of baselines:

5.2.1 Single Modality Methods
• DTC [9] predicts the credibility of a Twitter event

by a decision tree classifier and four types of hand-
crafted features, including message-based, user-
based, topic-based, and propagation-based features.

• GRU2 [12] constructs all responding tweets as
variable-length time series, and uses a multilayer
GRU network to model the temporal pattern of the
rumor diffusion.

• RvNN [19] organizes a conversation thread as a tree-
structure propagation based on the reply relation-
ship, and recursively generates the representation of
such propagation from different angles (bottom-up
or top-down) to identify rumors.

• PPC [62] uses both recurrent and convolutional net-
works to model the propagation path of each claim,
with the aim of the early detection.

• dEFEND [22] is a text-based method, which uses bi-
GRU to encode text content and co-attention to select
the key comments for explainable detection.

• GLAN [61] regards all claim tweets, responses and
users as a heterogeneous graph, and models the
local semantic relation (a claim and corresponding
responses) and the global structure (all claim tweets
and all users) of rumors with the attention network.

• PLAN [20] is a Transformer-based method that mod-
els the full-connected structure of all responses con-
sidering the uncertain response relations.

5.2.2 Multi-modal Methods
• EANN [33] applies the adversarial neural networks

to capture event-invariant features of the multi-

modal claim for debunking fake news in newly
emerged events.

• att-RNN [63] identifies rumors by leveraging the
attention mechanism to extract multi-modal features
from the claim, including textual, visual and social
context features.

• LIIMR [64] explores the importance of different
modalities in identifying fake news.

• CAFE [24] regards the cross-modal ambiguity as a
gate to adaptively aggregate unimodal features or
capture cross-modal correlations.

• MKEMN [14] captures latent temporal features of
the current event with its all corresponding re-
sponses and then builds the external memory to
restore the event-invariant features for transferring
from seen data to newly emerged events.

• Retrieval-based [26] proposes a retrieval baseline
which leverages the claim text or the claim image
to do evidence retrieval in a coarse-grained manner.

• MFAN [25] makes the first attempt to integrate the
heterogeneous multi-modal data (text, image and
social graph) in one framework, and verifies rumors
by modeling complex data relationships with the
graph network.

5.3 Performance Comparison

Table 2 and Table 3 demonstrates the rumor verification
results of the compared methods and our model on three
real-word datasets. Following [19], [61], we leverage the
accuracy as the evaluation metric over the four classes and
F1 score for each one. As for Weibo, the accuracy is the
main evaluation metric and precision, recall and F1 score
are adopted to evaluate each class.

The single modality methods model community re-
sponse from different perspectives. Without the deep learn-
ing, DTC performs worse than other methods, because the
hand-crafted features could not enumerate all the features
hidden in the community response. Although the deep
learning network is applied in the other models, the result
of GRU2 is poorer due to the failure to capture semantic
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TABLE 3
Rumor verification results of Weibo.

Method Acc. FR TR
Precision Recall F1 Precision Recall F1

Textual

DTC 0.831 0.847 0.815 0.831 0.815 0.847 0.830
GRU2 0.910 0.876 0.956 0.914 0.952 0.864 0.906
PPC 0.921 0.896 0.962 0.923 0.949 0.889 0.918

dEFEND 0.908 0.905 0.908 0.907 0.911 0.905 0.908
GLAN 0.946 0.943 0.948 0.945 0.949 0.943 0.946
PLAN 0.920 0.918 0.921 0.920 0.922 0.919 0.920

Multi-modal

att-RNN 0.899 0.914 0.879 0.896 0.885 0.919 0.902
EANN 0.909 0.949 0.862 0.903 0.875 0.955 0.913
LIIMR 0.914 0.913 0.917 0.915 0.915 0.912 0.913
CAFE 0.921 0.934 0.909 0.922 0.908 0.933 0.921

MKEMN 0.923 0.935 0.908 0.921 0.912 0.938 0.925
Retrieval-based 0.931 0.950 0.910 0.929 0.915 0.953 0.933

MFAN 0.935 0.954 0.914 0.933 0.918 0.957 0.937
FoRM 0.962 0.956 0.967 0.961 0.967 0.957 0.962

information of special response. GLAN and PLAN regard
each response as a unit and model the their interaction with
post-level embedding, so they reach the better performance,
which indicates the importance of the semantic information
in user responses.

Among all the multi-modal baselines, the response-
based methods (MKEMN, Retrieval-Based and MFAN) out-
perform the claim-based methods (att-RNN, EANN, LIIMR
and CAFE). Thus, discovering clues from user responses for
rumor detection is a practical way. Benefited from BERT, the
powerful text encoder, the performance of LIIMR and CAFE
are both better than att-RNN and EANN. However, even in-
troducing the multi-modal claim, the result of MFAN is also
poorer than GLAN, which indicates the effective method of
modelling the multi-modal claim and user responses has not
been well exploited.

The multi-modal coarse-grained selection baseline
(Retrieval-Based) has a better performance than the textual
one (dEFEND). This indicates that the multi-modal infor-
mation in the claim is crucial to identify rumors. Retrieval-
Based leverages the each modality of the claim as query
to search the evidences independently, and just concatenate
the their result for rumor verification. Thus, Retrieval-Based
ignores the cross-modality relation of the claim. Besides, the
fine-grained features of the responses and the multi-modal
claim are also ignored. These two reasons may result in the
poorer performance than our FoRM.

To the end, our FoRM leverages the multi-modal infor-
mation of the claim to select the relevant responses from the
whole responses, which could avoid the irrelevant tweets
distract the model from locating the key clues. Consid-
ering the focus of a user may be on special words in
the text content or an object in the image, we propose to
evaluate the relevance by aligning the response and the
multi-modal claim in the fine-grained way. This is different
from dEFEND, PLAN and Retrieval-Based that leverages
the post-level attention to focus on the crucial responses.
Hence, FoRM achieves the best performance among all the
baselines, not only single modality methods but also the
multi-modal methods.

TABLE 4
The effectiveness of different components in FoRM on Weibo.

Models Acc.
FR NR
F1 F1

FoRM 0.962 0.961 0.962
w/o Visual 0.935 0.935 0.935
w/o Fine-grained 0.945 0.945 0.944
w/o Selection loss 0.928 0.927 0.928
w/o Jointly train 0.934 0.934 0.934

Fig. 3. Performance comparison with different visual encoders.

5.4 Ablation Study

To validate the effectiveness of the components in the
proposed FoRM, we design several variants based on our
model for ablation experiments.

In Table 4, to show the effectiveness of each components
of FoRM, we remove the key components and design four
variants: FoRM w/o Visual, FoRM w/o Fine-grained, FoRM
w/o Selection loss, and FoRM w/o Jointly train. Without
the selection loss, the performance of FoRM w/o selection
loss drops significantly, which demonstrates the designed
selection loss could improve the effectiveness of the can-
didate responses for subsequent fine-grained reasoning.
Besides, we first train the coarse-grained selection module
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On 17 June 2013, at 6.15pm, the monster was 
successfully recovered from Sandao Bay of Kanas 
Lake, measuring 10m and 7.5m long.

① It's not true... Museum Magazine had verified that it's a sea shark, it can't be found in Kanas 
Lake. It's too scary.

② Checked it out, it's fake news, this species says it's a whale shark how many days does it 
take to eat it really de there's a lake monster

③ You can eat it for a long time. It's not true... Museum Magazine has verified that it's a sea 
shark, and it can't be in Kanas Lake!

④ I saw this catfish five years ago. Is it true? Did you get a certificate? 
⑤ What mystery is there left, just let it end up at the bottom of the lake ！！！！！ I hope this 

message is false!
⑥ False. I saw this photo a few months ago.
⑦ Didn't the documentary say the water monster was a Cherokee Salmon? Fake news!!!! It's a 

whale shark! Is Lake Kanas a saltwater lake?
⑧ Fake news!!! It's a whale shark! Is Kanas Lake a saltwater lake? It's a big catfish?
⑨ Really?
⑩ It's not true.

Coarse-grained Selection

Fine-grained Reasoning
① I saw this catfish five years ago. Is it true? Did you get a certificate?
② You can eat it for a long time. It‘s not true... Museum Magazine has verified that it’s a sea 

shark, and it can‘t be in Kanas Lake!
③ It‘s not true... Museum Magazine had verified that it’s a sea shark, it can‘t be found in 

Kanas Lake. It’s too scary.

Multi-modal Claim 

0.68

0.17

0.14

Fig. 4. A sample of false rumor in Weibo dataset and we translate the Chinese sentences for reference. In the right part, coarse-grained selection
module selects 10 responses as the candidates. Subsequently, fine-grained reasoning module resorts these candidate responses and assigns
higher relevance scores (blue numbers) for three. The red words and red image region represent the focus of FoRM to debunk this false rumor.

TABLE 5
Results of different fine-grained module on Weibo.

Models Acc.
FR NR
F1 F1

FoRM 0.962 0.961 0.962
+GAT with sentence-level features 0.943 0.941 0.944
w/o information propagation 0.937 0.938 0.937
w/o relevance prediction 0.952 0.954 0.951

TABLE 6
Results of different selection module on Weibo.

Models Acc.
FR NR
F1 F1

FoRM 0.962 0.961 0.962
+attention 0.941 0.939 0.942
+cosine similarity 0.930 0.928 0.931
+non-linear layer 0.940 0.940 0.940
w/o cross-attention module 0.953 0.953 0.954

with selection loss separately. Then, leveraging its outputs of
relevance scores to train the fine-grained reasoning module.
We observe that the performance of FoRM w/o Jointly
train even poorer than FoRM w/o Fine-grained. Because
of the lack of the fine-grained interaction, the relevance
scores initialized by the coarse-grained selection module are
not reasonable enough. Based on these scores, the selected
candidate responses may confuse the fine-grained reasoning
module and result in the drop of accuracy. Thus, training
this two modules in the end-to-end manner would refine the
scores of the coarse-grained selection based on the feedback
of the fine-grained reasoning, which could also improve the
effectiveness of the selection.

In Fig 3, we compare the performance of FoRM with

different visual encoders. As the pre-trained VGG and
ResNet are widely used for extracting the visual feature,
we leverage them to replace our visual encoder respectively.
Compared with FoRM, the accuracy of FoRM+ResNet and
FoRM+VGG are both poorer. These results indicate that
the feature extraction of Faster R-CNN conforms to the
semantics of the image, which performs better in our model.

To further demonstrate the effectiveness of the fine-
grained component, we design three variants to fuse the
candidate responses from the selection module. In the in-
formation propagation, the semantic representation of re-
sponses are inferred by the fine-grained aggregation with
the multi-modal claim and other candidate responses. With-
out the information propagation, the accuracy of FoRM w/o
information propagation drops significantly, which indicate
that response representation by fine-grained aggregation is
more important for rumor detection. Besides, although the
fine-grained fusion is used in each response and the multi-
modal claim, FoRM w/o information propagation still gets
the poorer performance than FoRM + GAT. This demon-
strates that only replying on a single response would not
identify rumors enough, and other responses may provide
additional evidences to refine current response. The high ac-
curacy of w/o relevance prediction, which directly leverage
the attention aggregation of the response representations,
also reveals that the importance of more complicated re-
sponse representation by the information propagation.

Within the coarse-grained selection module, we concate-
nate the multi-modal claim and responses with post-level
representation. Then a linear layer with softmax function
is used to initialize the relevance score of each response.
In Table 6, we leverage attention and cosine similarity to
initialize the relevance scores. Specifically, FoRM+attention
and FoRM+cosine similarity regard the claim as a query to
calculate the attention scores and cosine similarity scores
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to initialize the relevance scores. We use the non-linear
layer, FoRM+non-linear layer (a linear layer with ReLU and
softmax), to initialize the relevance scores, rather than the
linear layer. The accuracy of these three variants all drop
significantly, which demonstrates the concatenation of the
multi-modal claim and the responses is more suitable for
our FoRM. Additionally, the cross-attention module is cru-
cial to extract the multi-modal representation of the claim.
When replacing the cross-attention module with element-
wise addition, the accuracy drops almost 1.0%.

(a)

(b)

Fig. 5. The influence of the number k of candidate responses and the
trade-off β on the performance of our model.

Finally, Fig. 5 shows the influence of the number of can-
didate responses (topk) and the trade-off β of the loss func-
tion on performance. As it is costly and redundant to align
all responses and the multi-modal claim in the fine-grained
way, we propose to select topk responses as the candidate
ones based on the initial relevance scores from the coarse-
grained selection module. In Fig. 5(a), our FoRM achieves
best performance on Twitter15, Twitter16 and Weibo, when
k is 9, 13, 10 respectively. These results suggest that the more
responding tweets used, the worse performances may be
obtained, since more tweets may include noise tweets and
propagate the noise to other tweets through the information
propagation. Besides, another important hyper-parameter is
the trade-off β of combining the selection loss. In Fig. 5(b),
the results show that the best performance is reached by
setting β to 0.3, 1.0, and 1.0 for Twitter15, Twitter16 and
Weibo respectively.

5.5 Case Study
Fig. 4 shows the example of multi-modal false rumor in
Weibo dataset. As a two-stage framework, FoRM firstly use

the coarse-grained selection module to select 10 responses
by their post-level representations. Benefited from the se-
lection loss, these candidate responses include the query,
”Really?”, and denying, ”It’s not true.”, which are both
helpful to debunk rumors. Subsequently, the fine-grained
reasoning module resorts the candidate ones with the fine-
grained relation attention. Rather than only focusing on the
stance, denying the claim, our model pays more attention on
finding clues, thus the three responses with higher relevance
scores both contain the stance of querying or denying,
”It‘s not true”, ”Is it true?” and the reasons, such as, ”I
saw this catfish five years ago.”. The highest relevance score
response, ”I saw this catfish five years ago. Is it true? Did you
get a certificate?”, shows the effectiveness of our relation
attention module. The key word, ”catfish”, connects this
response and the image region in the claim, resulting in
the highest relevance score. This also indicates the main
clues for debunking this multi-modal claim are in the image
and explains why not pay more attention on the response
including the same word, ”Kanas Lake”, in the claim text.
Within the information propagation, with the same word,
”catfish”, the response, ”I saw this catfish five years ago.
Is it true? Did you get a certificate?”, connects the eighth
response, ”Fake news!!! It’s a whale shark! Is Kanas Lake
a saltwater lake? It’s a big catfish?”. Finally, the clues are
incorporated as: (1) this image was posted five years ago; (2)
the monster in this image is a whale shark; (3) Kanas Lake
is not a saltwater lake, so it is not a suitable living area for
whale sharks. Hence, this multi-modal claim is debunked as
false rumor.

6 CONCLUSION
In this paper, we proposed a two-stage framework, termed
FoRM, to focus on the relevant response for multi-modal ru-
mor detection model. To evaluate the relevance of responses
for verifying the multi-modal claim, an effective approach
is to align responses with the different modalities of the
rumor claim in a fine-grained manner. However, due to the
substantial volume of response tweets, it is both costly and
redundant to align all responses with the multi-modal claim.
Therefore, our FoRM consists of the coarse-grained selection
module and the fine-grained reasoning module. Specifically,
the coarse-grained selection module firstly leveraged the
post-level features to select top k responses as the can-
didates. Subsequently, the fine-grained reasoning module
captured the fine-grained relations, i.e., token-to-token and
token-to-object relations, of the multi-modal claim and the
candidate tweets to identify the relevant responses for de-
bunking rumors. The experiments on three public datasets
showed that our model outperforms all the baselines and
could select more reasonable tweets based on the multi-
modal claim for further rumor detection.
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