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Abstract:
As a result of the development of a new generation of artifi-

cial intelligence and carbon-neutral technologies, traditional in-
dustries are undergoing dramatic transformations. The explo-
ration of industrial intelligence is still in its nascent stages, partic-
ularly lacking technical approaches to distill experiential knowl-
edge from heterogeneous data sources originating from various
origins. Knowledge Graphs (KG), as cutting-edge artificial in-
telligence technologies, can enable knowledge management and
reuse while condensing valuable knowledge. As a result, fully uti-
lizing KG’s potential in the industrial field is critical to the re-
alization of autonomous sensing, cognition, and the evolution of
next-generation intelligent manufacturing systems. This paper
starts with an overview of the current state of industrial knowl-
edge graph development and shows how to construct an industrial
knowledge graph (IKG). Following that, we provide a thorough
and in-depth review of various industrial scenarios supported by
knowledge graphs. Furthermore, this paper identifies the current
challenges confronting industrial applications and proposes future
research directions for IKG. It is hoped that this research will
draw the attention of more researchers to the knowledge graph-
based smart manufacturing paradigm and benefit their work.
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1. Introduction

Intelligent manufacturing technologies have been driven by

the rapid development of artificial intelligence, industrial in-
ternet, edge computing, and other emerging information tech-
nologies. Countries all over the world have identified the de-
velopment of a new generation of intelligent manufacturing
technology as a critical technology for increasing global com-
petitiveness. Intelligent manufacturing systems have initially
possessed basic capabilities such as state monitoring and auxil-
iary decision-making following recent development. However,
there are still flaws, such as an over-reliance on human inter-
vention and difficulty completing complex tasks on one’s own.
This is because current intelligent manufacturing systems are
incapable of summarizing and summarizing empirical knowl-
edge in the same way that humans do.

Knowledge Graphs is an artificial intelligence technology
that manages, coordinates, and distills all types of knowledge
(e.g. mechanism, data, etc.) [1]. By organizing massive het-
erogeneous concepts with interconnected nodes and defining
cross-level relationships with heterogeneous edges, knowledge
graph can aid intelligent manufacturing systems in their abil-
ity to acquire and deduce detailed knowledge [2]. When con-
structing industrial knowledge graph (IKG), strategies such as
multiple views are commonly used to define the attribute char-
acteristics of the connected edges of heterogeneous nodes [3].
This type of processing becomes a powerful support for the
downstream tasks of intelligent manufacturing systems. By
providing support for industrial intelligence, knowledge graph
technology not only promotes the development of the industrial
sector, but also improves the quality of production and service.

Related Surveys and Our Contributions. In recent years, the
critical review of KG applications in industrial scenarios has at-
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tracted surging attention. For instance, the authors of [4] partic-
ularly analyzed potential applications of KGs in scenarios and
mainly focused on maintenance, optimization, and resource al-
location. Studies related to KG for Industry 4.0 modeling stan-
dards, norms, and frameworks are reviewed in [5]. By contrast,
several surveys focus on different types of industrial scenarios,
such as food science and industry [6], power transformers [7],
smart grid [8] and fault diagnosis [9]. The key aim of this sur-
vey is to give a overview of the recent development, challenges
and future research directions of industrial knowledge graphs,
fully demonstrating the practicability of KG-driven technology
in the industrial smart service. The main aspects of this review
are as follows:
• We first revisit the various steps involved in the industrial

knowledge graphs construction process.
• We categorize the IKGs and present several major works

and their corresponding models for each topic.
• We summarize some challenges and future research direc-

tions of adopting KGs in the industrial manufacturing process.

2. Building Industrial Knowledge Graphs

In the context of the formal model regarding the construction
of an industrial knowledge graph can be categorized into three
stages: knowledge construction, representation and reasoning,
and using stages. The construction process is shown in Fig. 1.

sensor datamanufacturing fault data
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FIGURE 1. A workflow for constructing and implementing industrial
knowledge graphs.

Knowledge Construction Stage. The raw data in industrial
scenarios have a lot of noisy facts in the knowledge construc-
tion stage. Knowledge acquisition aims to acquire relevant en-
tities, attributes, relations, rules, and facts from semi-structured
and unstructured data in industrial scenarios. To guarantee the
high accuracy of acquired knowledge, some advanced deep
learning methods such as BiLSTM-CRF, BiLSTM-ALBERT,

etc., which are also proposed to extract entities and indicate
the dispatching behavior relationship patterns [10]. Knowledge
fusion, achieved through entity alignment and entity linking,
plays a crucial role in facilitating the sharing, association, and
discovery of knowledge units [11]. Then, knowledge refine-
ment can further detect noise in KGs to inconsistency checking
and modify the knowledge graph adopting entity classification,
relation prediction, and anomaly detection[12].

Representation and Reasoning Stage. Learning low-
dimensional distributed embedding of entities and relations is
the core of representation learning. In industrial scenarios,
classic models for knowledge representation learning include
translation-based [13] and tensor factorization-based [14] mod-
els, while neural network-based [15] methods have occupied
an important position in this field. Then, the new information
is obtained through knowledge reasoning[16], including entity
alignment and padding and attribute value alignment.

Using Stage. When deploying knowledge systems into real-
world applications, the primary concern of this stage is to en-
able stakeholders to manipulate the knowledge base without re-
quiring detailed knowledge of its inner workings. Recently,
numerous scholars have conducted on designing a human-
machine interface that emphasizes ergonomic characteristics,
such as friendliness and transparency [30]. For instance, chat-
bots [31], visualized graphs [32], and question-answering sys-
tems [33] have all proven to be effective in industrial cases.

3. An Overview of Knowledge Graphs Technology in
Industrial Scenarios

Knowledge graphs contain rich structured knowledge and
can be leveraged for various downstream tasks. The schematic
diagram of industrial service scenario based on the industrial
knowledge graph is shown in Fig. 2.

Predictive Maintenance. Predictive maintenance is a preven-
tive maintenance approach that relies on online health assess-
ment to predict the breakdown of a system by detecting early
signs of failure. It is performed based on an online health as-
sessment and predicts the breakdown of the system to be main-
tained by detecting early signs of failure. Nunez et al. [17]
proposed an ontology-based predictive maintenance method,
which utilizes sensor data, fault data, historical maintenance
data, and other information to predict the future state of the
machine and provide corresponding maintenance recommen-
dations. Nunez et al. [18] also used ontology to define the re-
lationship between machines and their health status, and used
expert system rules to determine whether the machine is in a
normal state, warning state, or failure state. Recently, deep
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learning algorithms have gained much attention in the field of
predictive maintenance for rotary machinery systems. For in-
stance, Hou et al.[19] used knowledge graph reasoning method
and machine learning algorithm to construct a fault prediction
model of elevator running system, providing references for ele-
vator maintenance management. Aiming to provide a complete
architecture which could be used in industrial IoT, Qiu et al.
[20] extracted the features from the vibration signals and auto-
matically identified the dynamic characteristics of the machine
structure based on knowledge graph, so as to automatically to
monitor the machine tool health condition.
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FIGURE 2. The schematic diagram of industrial service scenario based
on the industrial knowledge graph.

Fault Diagnosis. Fault diagnosis plays a critical role in ex-
ploring the relationship between monitoring data and the health
status of machines. For example, Hossayni et al. [21] applied
distributed architecture and ontologies to diagnose and isolate
faults in induction motors. Giustozzi et al. [22] presented an
approach that uses knowledge graph stream reasoning to iden-
tify in real time certain situations that lead to potential faults.
To solve the problem of diagnosing the root cause of abnor-
mal performance in steam turbine applications, Qiu et al. [23]
presented an root cause analysis method based on a knowl-
edge graph and a bayesian network. Aiming at the problems
of incomplete and uncertainty knowledge in machine tool fault
diagnosis, Lu et al. [24] presented a data-driven iterative au-
tomatic construction method of knowledge graph, and applied
fault knowledge graphs to assist fault troubleshooting applica-

tions. Wan et al. [26] developed a multi-faceted modelling
approach that combines knowledge graph and machine learn-
ing algorithms to diagnose strip breakage during cold rolling
in the steel industry. By fusing data from multiple sources,
this approach provides a more comprehensive understanding of
complex industrial processes and helps improve the accuracy
of diagnosis. Given that manually collecting the labelling pro-
cess from multiple sources corpus (such as maintenance logs
and manuals) is time-consuming, Chen et al. [27] utilized a
relation-aware-based sentence-level attention enhanced com-
ponent for relation extraction. They trained the component on
remote monitoring data as supervised learning samples to au-
tomatically construct a fault diagnosis knowledge graph. The
core idea of the work [28] is innovative in combining causal-
ity mining and knowledge graph techniques to achieve root
cause diagnosis of performance anomalies in cloud applica-
tions. Based on the Function-Behaviour-Structure theory, Shi
et al. [29] presented an information integration approach for
spacecraft fault diagnosis scenarios. Subsequently, deep rein-
forcement learning and graph neural network methods [25] are
introduced, allowing the low-level graph to evolve into a high-
level graph containing more abundant fault information.

Industrial Security. The large-scale deployment of sensors
in industrial systems brings significant security risks and chal-
lenges. Dorodnykh et al. [35] proposed a method to automate
the extraction of specific entities from tabular data and demon-
strated the validity of the semantic interpretation of individual
tabular elements as a key feature through a case study. Fang
et al. [36] designed a hybrid computer vision and ontology
model to identify hazards from images automatically. By us-
ing historical railway reports, Liu et al. [37] combined the data
enhancement method to build a connected network of hazards
and accidents to form a knowledge graph, which was applied to
railway hazard identification and risk assessment. For numeri-
cal control machine tool fault analysis, Duan et al.[38] adopted
risk-based knowledge graph to help production managers iden-
tify safety-critical components in CNC machine tools.

Intelligent Decision-making. In the last few years, intelli-
gent decision-making has become a hot topic in industrial sce-
narios and benefited many decision-making-related tasks and
real-world applications across a variety of areas. Munoz et
al. [39] highlighted the potential of using knowledge graphs
and multi-label learning models for adverse drug reaction pre-
diction, which has important implications for improving drug
safety and patient outcomes. Liu et al. [40] built multi-layer
manufacturing domain knowledge graph based on the data col-
lected from manufacturing process, thus achieving perception
analysis and cognition decision-making in the resource allo-
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cation of the manufacturing process. The work in [41] intro-
duced knowledge graph into an automatic machining process
decision-making system, which is based on a three-level in-
formation model and a hybrid reasoning algorithm, leading to
an effective system for intelligent process decision. In light of
this, IKGs can assist organizations in making more informed
decisions, reducing costs, and enhancing productivity in vari-
ous industrial settings.

Production Efficiency. The increasing information complex-
ity and its influence on production efficiency are fundamentally
crucial for current manufacturing processes. Zhou et al. [46]
explore the implicit relationship between complex engineering
data through knowledge graph, it integrates the implicit engi-
neering knowledge in a machining workshop environment and
is used for supporting the optimization of resource allocation.
Xu et al. [42] applied ontology and multiple decision graph
(MDD) to cloud monitoring system to improve the running ef-
ficiency of the reasoning process.

4. Open Challenges

This section further presents some remaining challenges of
adopting knowledge graphs on industrial scenarios.

Data Quality Requirements. The quality of data in practical
industries has a significant impact on performance, and real in-
dustrial scenarios generally contain high levels of noise hetero-
geneous data [45]. In this case, development activities driven
by noisy information may cause a system to crash or malfunc-
tion. To address these issues, data cleaning, normalization,
and knowledge fusion techniques should be performed to re-
move inconsistencies and boost the quality of the data. Besides,
some studies attempted to introduce other knowledge curation
mechanisms to measure KG completion, and KG correctness
approaches, but the involvement of extra work is still unavoid-
able to meet the infrastructure requirements.

Huge Computing Burden. The high complexity of indus-
trial production requires large-scale IKGs, which in turn re-
quires processing an enormous amount of training parameters.
This leads to the problem of high computation cost, which is
a pain point that plagues industrial applications. For instance,
condition monitoring of robot gears can decrease unexpected
downtimes of highly automated production lines, but the im-
plementation of this solution is expensive due to costly hard-
ware. Therefore, to better support low-cost industrial manu-
facturing, the interaction between knowledge graphs and the
industry needs further enhancement. We are convinced that the
development of a low-cost, high-efficiency industrial automa-
tion technology will be a great advance in this sector.

Multi-line and Multi-product Constraints. In industrial man-
ufacturing production, a multitude of requirements and con-
straints must be considered, such as product line segments,
resource sharing, minimum run-length constraints, and more,
making it a highly complex decision-making problem. Exist-
ing methods usually adopt constraint optimization methods to
optimize multiple objectives, reducing the loss of one objective
when optimizing another. However, these methods optimize
objective-by-objective, leading to time-consuming production
processes. Therefore, industrial manufacturing production re-
quires solutions that consider more constraints to execute many
operations in industrial scheduling.

5. Future Perspectives

Based on the comprehensive literature survey above, we dis-
cuss several potential future research directions.

Human-machine Co-evolvement. Human workers excel at
tasks requiring high-level cognitive decision-making and ex-
ception handling, while machines excel at precise computing,
repeatability, and fast production. Using knowledge graphs,
we can bridge the semantic gap and break human operators’
thinking patterns with creative insights discovered by cognitive
machines. In this sense, it is necessary to design more effective
and elegant models to proactively improve their performance
in the manufacturing process. Therefore, in the coming years,
a sophisticated mechanism will be developed in which humans
and machines can assist each other for sustainable growth.

Interpretable of Deep Model. Neural methods are scalable,
but their lack of interpretability limits their application in indus-
trial services, as operation managers may not fully trust models
lacking explanatory results. The core idea of decision-making
in engineering requires model outputs to be accompanied by
scientific understanding. One straightforward way is utilizing
interpretable methods, such as decision tree [47] and k-means
clustering [48]. However, all these models are often less power-
ful than intelligent methods. In fact, knowledge graphs excel at
processing multi-source information of industrial scenarios and
providing interpretability. Further research on interpretability
based on knowledge graphs is recommended to bridge the trust
gap between operation managers and artificial intelligence.

Few-shot and Zero-shot Learning. The completeness and ac-
curacy of IKGs largely depend on the quantity and quality of
the data collected. However, in real-world industrial environ-
ments, the collected raw data generally have a skewed distribu-
tion. For instance, fault classification is an important issue in
industrial monitoring, where one class, such as fault instances,
is insufficiently represented compared to other classes, such as

197

Proceedings of the 2023 International Conference on Machine Learning and Cybernetics, 9-11 July, 2023

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 09,2024 at 06:47:56 UTC from IEEE Xplore.  Restrictions apply. 



healthy instances. This results in relatively few fault instances
in such datasets, which are likely classified as rare occurrences,
ignored, or assumed as outliers, leading to inaccurate algorithm
classification. Any manufacturing errors can cause irreparable
damage to the industrial system. Therefore, there is a need to
design more effective-based transfer learning models, such as
knowledge distillation, to utilize industrial information better.

6. Conclusion

The industrial manufacturing scenario has a lot of complex
industrial data, which has necessitated the development of ad-
vanced data analysis tools that are capable of handling the prop-
agation and the heterogeneity of the above data. Therefore, we
explored the domain of KG-based industrial and presented it
well-categorized to express how a knowledge graph provides
side information to industrial applications to enhance perfor-
mance. In this survey, we introduced various methods pro-
posed for building industrial knowledge graphs and discussed
application-oriented approaches that use knowledge graphs to
accomplish industrial tasks. Despite challenges in complex
manufacturing scenarios, we have seen considerable applica-
tion prospects for industrial knowledge graphs in the industrial
domain. Lastly, we presented some future research perspec-
tives to provide clear guidance for new researchers in this field.
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[17] D. L. Nuñez, et al, “An ontology-based model for prog-
nostics and health management of machines”, Journal of
Industrial Information Integration, pp. 33-46, 2017.
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