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Abstract
To improve the performance of classifying nodes on unlabeled or scarcely-labeled networks,
the task of node classification across networks is proposed for transferring knowledge from
similar networks with rich labels. As data distribution shift exists across networks, domain
adaptive network embedding is proposed to overcome such challenge by learning network-
invariant and discriminative node embeddings, in which domain adaptation technique is
applied to network embedding for reducing domain discrepancy. However, existing works
merely discuss category-level domain discrepancy which is crucial to better adaptation and
classification. In this paper, we propose category-level domain adaptive network embed-
ding. The key idea is minimizing intra-class domain discrepancy and maximizing inter-class
domain discrepancy between source and target networks simultaneously. To further enhance
classification performance on target network, we reduce embedding variation inside each
class and enlarge it between different classes. Graph attention network is adopted for learn-
ing network embeddings. In addition, a novel pseudo-labeling strategy for target network is
developed to better compute category-level information. Theoretical analysis guarantees the
effectiveness of our model. Furthermore, extensive experiments on real-world datasets show
that our model achieves the state-of-art performance, in particular, outperforming existing
domain adaptive network embedding models by up to 32%.
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1 Introduction

Node classification is a critical yet challenging task, primarily due to the difficulties and
expense involved in acquiring abundant high-quality labels. Contemporary network embed-
ding techniques, such as graph neural networks [1–3], typically depend on a substantial
quantity of labels to achieve satisfactory classification performance (e.g., labeling ratio equals
to 53.7% in ogbn-arxiv dataset [4]). This dependency could result in suboptimal performance
in scenarios with unlabeled or sparsely-labeled networks. To mitigate these issues, we pro-
pose the task of node classification across networks. Given a target network where nodes
need to be classified, we can select several source networks from similar domains to impart
rich label information, thus transferring valuable knowledge to the target network. In this
way, we can potentially elevate the classification performance on the target network. Con-
sider the example of social bot detection. Given that the acquirement of ground-truth bots
often necessitates extensive domain knowledge and the involvement of human experts, an
alternative approach may lie in constructing a cross-network node classification task that
incorporates additional social networks furnished with abundant bot labels [5, 6].

Node classification across networks presents novel challenges to existing network embed-
ding methods, which are tailored for single networks. A key hurdle is the distribution shift in
node embeddings across networks, which inhibits the inductive application of models trained
on source networks to target networks [7]. Consequently, domain adaptive network embed-
ding treats each network as a unique domain, implementing domain adaptation techniques on
network embeddings to reduce domain discrepancy and foster the learning of discriminative
node embeddings. It is a transductivemethodwhich learns node embeddings jointly on source
and target networks during training. Based on the metric used to measure domain discrep-
ancy, it can be categorized into two classes. One research direction explicitly models domain
discrepancy through Euclidean Distance and minimizes such discrepancy during training [8,
9]. Conversely, the other line of research employs adversarial training to minimize discrep-
ancy measurement, including but not limited to, Jensen–Shannon Divergence [10, 11] and
Wasserstein Distance [12, 13]. Despite these advancements, the majority of existing meth-
odsmainlyminimize global domain discrepancy calculated on the overall embeddings across
source and target networks, leaving domain discrepancy at category-level largely ignored.
Therefore, even though the overall node embeddings may overlap in the embedding space,
there could be negative instances where nodes from the same class across networks are
incorrectly separated, or nodes belonging to different classes across networks are incorrectly
overlapped. Figure1 illustrates this phenomenon.

Therefore, better embeddings for node classification across networks should satisfy two
conditions. First, embeddings in the same class are approximately overlapped, regardless of
their originating network (intra-class). Second, embeddings in different classes are separated
across networks (inter-class). As the existing methods ignore fine-grained category-level
information, which is defined as node embedding distribution conditioned on label distri-
bution, they leave intra-class domain discrepancy relatively large and inter-class domain
discrepancy relatively small. We mitigate such problem by explicitly modeling intra-class
and inter-class domain discrepancy followed by minimizing and maximizing them, respec-
tively.Moreover, as target network labeling information is required to compute category-level
domain discrepancy, it is essential to design a proper pseudo-labeling strategy for unlabeled
target network. We follow two principles. First, intra-class domain discrepancy should be
further reduced after pseudo-labeling. Second, neighboring nodes tend to have the same
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Fig. 1 Previous methods: “Despite the minimization of global domain discrepancy, the incorrect overlap of
node embeddings can still occur, potentially leading to misclassification. Ours: We alleviate misclassification
by exploiting category-level information

label. Thus, both embedding distribution of source and target networks and complex network
topology are taken into account to generate pseudo-labels.

In this work, we explore the novel problem of node classification across networks by
proposing category-level domain adaptive network embedding. Generally, we consider
category-level information from two aspects. First, we minimize intra-class domain dis-
crepancy and maximize inter-class domain discrepancy between source and target networks.
Considering such category-level domain discrepancy facilitates the transfer of label knowl-
edge from source networks, thereby enhancing adaptation performance. Specifically, we
utilize category-level MaximumMean Discrepancy(MMD) to compute intra-class and inter-
class domain discrepancy between network embeddings. As target networks are usually
unlabeled, we design a pseudo-labeling strategy in order to obtain category-level informa-
tion. In particular, target nodes are firstly labeled by their nearest source class centers in the
embedding space. To leverage network homophily (i.e., neighboring nodes tend to have the
same label), such pseudo-labels are further propagated on target networks for smoothing.
Subsequently, we further make node embeddings in target networks more discriminative by
reducing embedding variation inside each class and enlarging it between different classes.
The integration of category-level information within target network facilitates enhanced clas-
sification performance. More precisely, as the proposed pseudo-labeling strategy prefers to
assign nearby nodes in the embedding space with the same labels, it contributes to reducing
embedding variation inside each class on target networks. Furthermore, we apply entropy
loss to node predictions on target networks, with the aim of enlarging embedding variation
between different classes. Finally, we establish the effectiveness of the proposed model the-
oretically via generalization bound and conduct various experiments to verify its efficacy in
real-world scenarios.

To summarize, our contributions are listed as follows:

1. We propose category-level domain adaptive network embedding by minimizing intra-
class domain discrepancy and maximizing inter-class domain discrepancy between
source and target networks. To further enhance classification performance,we also reduce
embedding variation inside each class and enlarge it between different classes on target
network.
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2. We propose a novel pseudo-labeling strategy for domain adaptive network embedding,
in which both embedding distribution and network topology are exploited.

3. Both theoretical analysis and extensive experiments on real-world datasets verify the
effectiveness of the proposed model.

2 Related work

2.1 Network embedding

Network embedding aims to transform networks into continuous embedding space, preserv-
ing both network topology and node content information. The conventional methods include
matrix factorization [14], random walk [15, 16] and graph neural networks(GNN) [1–3].
Most of them concentrate on a single network, leaving the scenarios of multiple networks
under explored. Recently research has studied the problem of network embedding across
multiple networks by positing that at least a portion of nodes are shared across networks [17–
19]. In such a case, the embeddings of shared nodes should be consistent across networks.
However, domain-adaptive network embedding methods do not make this assumption about
shared nodes and, as a result, are applicable in a broader range of scenarios.

2.2 Domain adaptation

Domain adaptation refers to the process that adapting source domains with sufficient labels
to target domain with plenty of unlabeled data by minimizing their domain discrepancy [7,
20]. Recently, domain adaptation models utilizing deep neural networks have succeeded
in addressing cross-domain classification tasks in many fields including natural language
processing (NLP) [21–23] and computer vision (CV) [24–26]. Two main approaches are
identified in the literature [20]. Discrepancy-basedmodels measure domain discrepancy by
distancemetric andminimize suchdistance tomake learned features domain-invariant.Metric
includesMaximumMean Discrepancy(MMD) [24, 27–30], covariance [31], central moment
discrepancy [32], Kullback–Leibler Divergence [33] and so on. Besides,Adversarial-based
models are based on an adversarial loss which encourages samples from different domains
to be non-discriminative with respect to domain labels [34]. Domain adaptation cannot be
directly applied to network structured data because it assumes samples are independent
and identically distributed. Thus, it is necessary to study how to apply domain adaptation
technique to network embedding for solving node classification across networks.

2.3 Domain adaptive network embedding

To alleviate the existing distribution shift between source and target networks, domain adap-
tive network embedding adapts node embeddings in the target domain by capturing the
domain discrepancy and exploiting the knowledge from source domain while preserving the
intrinsic structure and properties of the target domain. It is worth mentioning that we have
noticed a parallel line of research in the field of graph out-of-distribution generalization [39–
42]. It is a problem of generalizing a model to predict on node sets that belong to unknown
distributions. To summarize, domain adaptive network embedding is a technique that can be
used to address the above-mentioned problem and enhance the performance of a model on
target domain data, whereas graph out-of-distribution generalization is a problem or task.
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Table 1 Summary of domain adaptive network embedding

Discrepancy measurement Model Encoder Category-level

JSD ACDNE [35] AutoEncoder No

UDAGCN [10] Dual-GNN No

ASN [11] Dual-GNN No

GRADE [36] GNN No

Wasserstein distance AdaGCN [13] GNN No

SpecReg [12] GNN No

χ2 divergence DANE [37] GNN No

Euclidean distance CDNE [9] Stacked AutoEncoder Yes

MMD GNA [38] Linear Transformation No

Mix GraphAE [8] GNN No

Mix means the model could adopt multiple measurements

Although both methods contribute to enhancing the generalization ability of models, they
focus on different tasks and scenarios.

Among the existing studies,mostmodels only focus on global domain discrepancy, leaving
category-level information ignored. Typically, adversarial training [34, 43, 44] is adopted to
learn global domain discrepancy. Among them, a group of models adopts Jensen–Shannon
Divergence (JSD) as discrepancymeasurement [8, 10, 11, 35, 35, 36]. Particularly, UDAGCN
[10] and ASN [11] implement dual GNN structure to capture both local and high-order
network topology. ASN further separates domain-private and domain-shared features by
designing a private encoder for each network and a shared encoder across networks. GRADE
[36] further considers topology differences between networks by combining discrepancy
measurement with Weisfeiler–Lehman graph isomorphism test. In addition, other models
adopt Wasserstein Distance [12, 13] as discrepancy measurement. Among them, SpecReg
[12] improves over AdaGCN [13] by adding spectral regularizations to smooth graph signals
for better adaptation. Apart from the models discussed above, DANE [37] takes Pearson
χ2 divergence as measurement to avoid the instability of adversarial learning. GNA [38]
incorporates graph kernels with MMD for better computing domain discrepancy between
networkswith temporal information. To sumup, Table 1 offers a summary of domain adaptive
network embedding methods.

Formodels considering category-level information, CDNE [9] utilizes EuclideanDistance
to measure global domain discrepancy together with intra-class domain discrepancy and
jointly minimizes them. However, it ignores inter-class discrepancy. Furthermore, Euclidean
Distance is inaccurate for computing distribution shift.Moreover, its pseudo-labeling strategy
does not explicitly take network topology into account, which degrades the quality of pseudo-
labels.

3 Problem statement

Generally, a network G can be represented by G = (A, X , Y ) and V , E denote node set
and edge set, respectively. Network topology is represented by adjacency matrix A. The
X ∈ R

N×M denotes node attribute matrix, where N = |V | and M is the dimension of input
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Fig. 2 Framework of the proposedmodel, which comprises four integral components: (1)A dualGNNnetwork
embedding module (2) A pseudo-labeling module (3) A domain discrepancy computation module, and (4) An
overall objectives optimization module

features. The Y ∈ R
N×C is 0–1 label matrix, and C is the number of labels. Yi,c = 1 denotes

node i is associated with label c.
In this paper, we study node classification problem across networks. We assume there is

one source domain with source network Gs and one target domain with target network Gt .
We focus on a more challenging task that Gt is totally unlabeled. We also follow two basic
assumptions in domain adaptation [7]. First, the node features Xs and Xt are sampled from
the same feature space. Second, two networks share the same set of labels. Thus, Gs and Gt

can be represented as Gs = (As, Xs, Y s) and Gt = (At , Xt ), respectively. Given Gs and
Gt , domain adaptive network embedding aims to learn an embedding function femb which
learns node embeddings Zs and Zt in R

h and a classifier fc which predicts target labels Y t

based on Zs , Zt and Y s .

4 Methods

The proposed method can be explained in four integral parts, i.e., network embedding,
pseudo-labeling, category-level domain discrepancy measurement and objective optimiza-
tion. The model framework is illustrated in Fig. 2.

4.1 Network embedding

The network embedding function femb incorporates dual GNN structure proposed by [10] to
capture both local and high-order network topology, which is implementedwithGraphAtten-
tion Network(GAT) [2]. Compared with GCN, GAT introduces attention-based aggregation
layer to capture different importance of neighborhood for a central node during forward
propagation. As previous studies [10, 11] have empirically proved, incorporating high-order
network information could improve adaptation performance.Besides, femb is typically shared
between source and target networks for better adaptation [37].

Specifically, femb utilizes two GATs to compute embedding Z on each network. One
GAT aggregates 1-hop neighbors from adjacency matrix at each layer. Given X and A, node
embeddings computed by adjacency matrix are denoted as Z (l) = GAT1(X , A), where
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Z (l) ∈ R
N×h . The other GAT aggregates high order neighbors from Positive Pointwise

Mutual Information (PPMI) matrix [10] at each layer. PPMI matrix P measures structural
proximity between nodes within K steps in a network and is computed through randomwalk.
A higher positive value of Pi, j indicates that vertex i has a strong connection with j within
K steps in network. Thus, given X and P , node embeddings computed by PPMI matrix
are denoted as Z (g) = GAT2(X , P), where Z (g) ∈ R

N×h . Finally, the node embeddings Z
are obtained by concatenating Z (l) and Z (g). Concatenation coefficients w1 and w2 are then
computed by applying a linear transformation matrix W : R2h → R

2:

wi = exp
(
W

(
Z (l)‖Z (g)

))
i∑

j=1,2 exp
(
W

(
Z (l)‖Z (g)

))
j

where ‖ denotes concatenation operator and Z is calculated as:

Z = w1Z
(l) + w2Z

(g) (1)

4.2 Pseudo-labeling

As we reduce intra-class domain discrepancy during training, nodes with the same label
across networks should ideally be proximate in the embedding space. This process inspires
us that we could initially assign target nodes with labels of their nearest source class centers,
thereby enhancing the accuracy of the pseudo-labels generated. The increased accuracy will
in turn benefit subsequent adaptation and classification tasks.

Specifically, we first compute C source class centers Os,c on source node embeddings:
Os,c = ∑

i Y
s
i,c Z

s
i /

∑
j Y

s
j,c,whereY

s
i,c = 1 if node i has label c andY s

i,c = 0otherwise.After
that we apply Gaussian Mixture Model(GMM) to target node embeddings for computing K
clusters, where K = C . We use� to indicate cluster probability matrix obtained fromGMM,
where �i,k refers to the probability of target node i belonging to the kth cluster. The Ot,k

denotes center of the kth target cluster, and Ot,k = ∑
i �i,k Z t

i /
∑

j � j,k . Motivated by the
above idea, we assign pseudo label c to the kth target cluster by choosing source class center
Os,c which is the nearest to Ot,k :

c = argmin
c′

Dist(Ot,k, Os,c′
) (2)

where cosine dissimilarityDist(x, y) = (1 − 〈x, y〉/‖x‖‖y‖) /2 is adopted and 〈·, ·〉 denotes
inner product.

After label assignment, pseudo label probability matrix Ŷ t could be induced from �

accordingly. For example, if �i = (0.2, 0.5, 0.3) for target node i and the three clusters are
labeled as {2, 0, 1} by Eq. 2, respectively, then Ŷ t

i = (0.5, 0.3, 0.2). As label assignment may

ignore network homophily property, Ŷ t is noisy. Thus, we iteratively propagate Ŷ t on target
network until convergence [45] for smoothing:

Ŷ t = r ∗ Ŷ t + (1 − r) ∗ Ãt Ŷ t (3)

where Ãt = Dt−
1
2 At Dt−

1
2 and Dt denotes node degree matrix.

The proposed pseudo-labeling strategy has two significant advantages. Firstly, by assign-
ing labels of the nearest source class centers to target nodes, it ensures that nodes within the
same class are in close proximity to each other across networks. This helps to decrease intra-
class domain discrepancy. Secondly, the strategy prefers to assign labels to nearby nodes in
the embedding space, helping to minimize variation within each class on target networks.
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4.3 Category-level domain discrepancy

After pseudo-labeling, we compute both intra-class domain discrepancy and inter-class
domain discrepancy based on MMD.

Given samples drawn from marginal distributions P and Q, respectively, MMD performs
a kernel two-sample test to determinewhether to accept the null hypothesis P = Q or not [46].
The basic idea behindMMDis that if the generating distributions are identical, all the statistics
are the same as well. Formally, MMD defines the difference between two distributions with
their mean embeddings in the reproducing kernel Hilbert space (RKHS):

dH(P, Q) = sup
φ

(Ep(φ(Zs)) − Eq(φ(Zt )))H (4)

where φ maps original embeddings to RKHSHwith a characteristic kernel k. Kernel kmeans
k(Zs, Zt ) = 〈φ (Zs) , φ

(
Zt

)〉. In practice, an estimate of 4 compares the square distance
between the empirical kernel mean embeddings [46].

Theoretically, intra-class domain discrepancy of class c refers to MMD between node
embeddings from two networks within the same class c, denoted as dccH . To compute the
empirical value of dccH , i.e., d̂ccH , we need to compute the square distance between theweighted
empirical kernel mean embeddings. We explicitly model the probabilities of nodes i , j
belonging to each class c on both source and target networks, which are denoted as w

s,c
i and

w
t,c
j , respectively.

∑Ns

i=1 w
s,c
i = ∑Nt

j=1 w
t,c
j = 1. For labeled source network, probability

w
s,c
i is computed as: w

s,c
i = Y s

i,c/
∑

k Y
s
k,c. For target network, w

t,c
j = Ŷ t

j,c/
∑

k Ŷ
t
k,c.

As label prior probability is not always equal between networks, modeling such terms is
necessary for more accurate computation. Thus, d̂ccH is computed as:

d̂ccH(P, Q) = ‖
∑

Zi∈Zs ,yi=c

w
s,c
i φ(Zi ) −

∑

Z j∈Zt ,ŷ j=c

wtc
j φ(Z j )‖2H

=
Ns,c∑

i=1

Ns,c∑

j=1

w
s,c
i w

s,c
j ki, j +

Nt,c∑

i=1

Nt,c∑

j=1

w
t,c
i w

t,c
j ki, j −

Ns,c∑

i=1

Nt,c∑

j=1

w
s,c
i w

t,c
j ki, j

where ki, j = k
(
Zi , Z j

)
and Ns,c, Nt,c denote the number of nodes belonging to class c on

two networks. In conclusion, as there are C classes in all, the intra-class domain discrepancy
Dintra is computed as:

Dintra = 1

C

∑

c

d̂ccH (5)

Inter-class domain discrepancy of classes c and c′ refers to MMD between node embed-
dings from two networks in different classes, denoted as dcc

′
H . Maximizing inter-class domain

discrepancy prevents embeddings coming from two networks in different classes from being
overlapped and therefore, makes them more discriminative. Similarly, we empirically com-
pute d̂cc

′
H as:

d̂cc
′

H (P, Q) = ‖
∑

Zi∈Zs

yi=c

w
s,c
i φ(Zi ) −

∑

Z j∈Zt

ŷ j=c′

w
t,c′
j φ(Z j )‖2H
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As there are C classes in all, inter-class domain discrepancy Dinter is computed as:

Dinter = 1

C(C − 1)

∑

c

∑

c′
c′ 	=c

d̂cc
′

H (6)

4.4 Overall objectives

The overall optimization objectives consist of category-level domain discrepancy, classifica-
tion loss, entropy loss and network reconstruction loss. Category-level domain discrepancy
is computed as Dintra − Dinter because we want to minimize Dintra and maximize Dinter.

To exploit knowledge from labeled source network, we train a classifier by minimizing
cross-entropy loss Lclf between classification prediction ys,pi and ground truth labels ysi on
every source node i :

Lclf = − 1

Ns

Ns∑

i=1

ysi log(y
s,p
i )

To enhance the discriminative capabilities of node embeddings from unlabeled target
network, we employ entropy loss Lentropy which makes classification prediction yt,pj on each
node j has the tendency to become one-hot vector; thus, it encourages decision boundary to
cross the low-density regions in embedding space and enlarge variation between classes on
target network [10]:

Lentropy = − 1

Nt

Nt∑

j=1

yt,pj log(yt,pj )

In addition, we also apply first-order loss function Lnet to source and target networks for
preserving neighboring topology, which is proposed in LINE [16]. Lnet = Ls

net + Lt
net.

Ls/t
net = −

∑

(i, j)∈Es/t

log σ(Zd
j
T
Zd
i ) − QnegEk∼Pneg(N ) log σ(−Zd

k
T
Zd
i )

where Qneg is the number of negative samples and Pneg(N ) is a noise distribution where
negative samples are sampled. We set Pneg(N ) ∝ d0.75i where di is degree of node i .

By integrating all the objectives mentioned above, the overall loss function is as follows:

Loss = α(Dintra − Dinter) + βLclf + γ1Lentropy + γ2Lnet (7)

where α, β, γ1 and γ2 are trade-off parameters to balance different objectives. Algorithm 1
illustrates model training in one epoch, where we iteratively sample S nodes belonging to
each class on both networks as one mini-batch and update the model according to Eq. 7.

4.5 Time complexity

Given a graph with |V | nodes, |E | edges and M-dimension node features together with a
two-layer GAT with hidden dims h1, h2, the worst complexity of femb is O(2|V |h1(h2 +
M)+(h1+h2)(|E |+|V |2)) as PPMImatrix is approximately dense in theworst cases. As the
complexity of other components is no more than O(|V |) or O(|E |), the overall complexity
is comparable to other domain adaptive network embedding models utilizing PPMI matrix.
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5 Theoretical analysis

In this section, we prove that even if target network is unlabeled, our model could bound
target training error according to source training error and gradually converge to optimal
point. We discuss in the embedding space as model encodes both network topology and
adaptation results into node embeddings.

Definition 1 D(P1, P2) measures the distance between two probability distributions and
satisfies triangular inequality: D(P1, P2) ≤ D(P1, P3) + D(P3, P2). D(P1, P2) could
also represent classification error when P1 and P2 stand for prediction and groundtruth
labeling functions, respectively.

Definition 2 fS and fT denote the groundtruth labeling functions on two networks. h∗
denotes the best model trained with Algorithm 1.

Definition 3 εS(h∗, fS) and εT (h∗, fT ) are training errors on source and target networks,
and they are marked as εS(h∗) and εT (h∗) for simplicity. Specifically, εS(h∗) is computed
as:

εS(h
∗) = Ez[D( fS, h

∗)] =
∫

Z
Ps(Z)D( fS, h

∗)dZ

and εT (h∗) is computed in a similar way. εT (h∗) is incomputable in practice as target network
is unlabeled.

Definition 4 Let h∗
t denote ideal target predictor: h

∗
t = argminht εT (ht ). h∗

t is incomputable
in practice as target network is unlabeled.

Lemma 1 introduces three basic properties of labeling functions.

Lemma 1 Two properties are hold h∗ and h∗
t :

D(h∗, fS) ≤ δ1 D(h∗
t , fT ) ≤ δ2

where δ1 and δ2 are small constants. Besides, another property holds for fS and fT :

D( fS, fT ) ≤ λ

Firstly,we assume the difference between the best predictor and groundtruth labeling function
to be small enough. D(h∗, fS) ≤ δ1 is because we use all labeled source nodes for training
and we test on the same set of nodes, while D(h∗

t , fT ) ≤ δ2 is because h∗
t is the ideal best

target predictor. Second, we assume the difference between groundtruth labeling functions
to be small enough, which is a common assumption for domain adaptation [47]. In practice,
as classifier is shared between networks, such property is guaranteed.

Based onLemma 1,we introduce Theorem1 to prove that ourmodel bounds target training
error in terms of source training error.

Theorem 1

εT (h∗) ≤ εS(h
∗) + (λ + δ1)M + λ (8)

where M = ∫
Z

∑C
y |Pt (y)Pt (Z |y) − Ps(y)Ps(Z |y)|dZ
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Term M represents intra-class domain discrepancy, which is equal to Dintra. As our
model gradually reduces Dintra and source training error εS(h∗) during training, we gradu-
ally reduces the upper bound of target training error. As a result, target training error decreases
accordingly. Finally, h∗ has a high classification accuracy on unlabeled target network. It is
worth mentioning that when utilizing category-level information, explicitly modeling prob-
ability of nodes belonging to each class Ps(y) and Pt (y) is necessary because we do not
assume such label prior probability is equal between networks. Thus, we model them byws,c

and wt,c in Eqs. 5, 6, respectively.

Proof

εT (h∗) − εS(h
∗)

= εT (h∗, fT ) − εS(h
∗, fT ) + εS(h

∗, fT ) − εS(h
∗, fS)

≤
∫

Z
|Pt (Z) − Ps(Z)|D(h∗, fT )dZ + εS(h

∗, fS) + εS( fS, fT ) − εS(h
∗, fS)

≤
∫

Z
|Pt (Z) − Ps(Z)|(D(h∗, fS) + λ)dZ + λ

= (λ + δ1)

∫

Z

C∑

y

|Pt (y)Pt (Z |y) − Ps(y)Ps(Z |y)|dZ + λ

= (λ + δ1)M + λ

�

Then, we introduce Theorem 2 to show that our model approximates to the ideal target
predictor and could converge to optimal point.

Theorem 2

εT (h∗) ≤ εT (h∗
t ) + (2δ2 + λ)M + δ1 + δ2 + λ (9)

Similarly with Theorem 1, as our model h∗ minimizes M, it gradually approximates to
ideal target predictor h∗

t . Thus, our model achieves remarkable results when it predicts target
labels.

Proof

εT (h∗) − εT (h∗
t )

= εT (h∗, fT ) − εS(h
∗
t , fS) + εS(h

∗
t , fS) − εT (h∗

t , fT )

≤ εT (h∗, h∗
t ) + εT (h∗

t , fT ) − εS(h
∗
t , fS) + εS(h

∗
t , fT ) + εS( fS, fT ) − εT (h∗

t , fT )

≤
∫

Z
|Pt (Z) − Ps(Z)|(D( fS, fT ) + D( fT , h∗

t ))dZ

+ δ2

∫

Z
|Pt (Z) − Ps(Z)|dZ + δ1 + δ2 + λ

≤ (2δ2 + λ)M + δ1 + δ2 + λ

�
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Algorithm 1 The proposed model
Require: Gs , Gt , Ps , Pt ; hyper parameters; learning rate lr ; maximum iterative times ITER; initialized

models femb and fc , θ = {θemb, θc}.
Ensure: Target network prediction Y t

1: Compute node embeddings Zs and Zt by Eq. 1
2: Generate pseudo-labels Ŷ t by Eq. 3. Gt ← Gt ∪ Ŷ t

3: iter ← 0
4: while iter<ITER do
5: Sample mini-batch from Gs and Gt

6: Compute loss in terms of Eq. 7
7: Update model: θ = θ − lr ∗ ∇θ loss
8: Update node embeddings Zs and Zt

9: iter ← iter + 1
10: end while
11: Y t ← argmax fc( femb(X

t , At ))

6 Experiments

6.1 Datasets

We adopt both citation networks and social networks to evaluate the proposed model.

• Citation: This dataset is widely used by domain adaptive network embedding models.
It is extracted from three AMiner [48] datasets formed in different periods and contains
three networks [9]. In each network, node represents an article, and each edge indicates
the citation of one article to another. An article can havemultiple labels indicating its rele-
vant research topics including “Databases”, “Artificial Intelligence”, “Computer Vision”,
“Information Security”, and “Networking”. The sparse bag-of-words features extracted
from the article title were utilized as the attributes for each article. We integrate word
dictionaries from three datasets into one dictionary to make sure their features have the
same dimension and each dimension represents the same meaning.

• Twitch: It contains five networks which are collected separately from different countries
or regions on Twitch platform [49]. Each network represents user-user relationship where
node corresponds to Twitch users and edge corresponds to mutual friendship. The asso-
ciated label is binary which indicates whether a streamer uses explicit language. Node
features are games liked, location and streaming habits.

Networks in citation or twitch dataset share the same feature space and label space, but
they vary in network topology, node attribute distribution and label distribution. We build
classification tasks between every two networks which belong to the same dataset. Dataset
description is provided in Table 2.

6.2 Baselines

We select baseline models from relevant fields including the following types:

• Unsupervised network embedding We use Variational Graph Auto-Encoder(VGAE)
[50] as unsupervised network embedding baseline, and it is only trained on target network
regardless of source network.

• Single network embedding We train GNNs w./w.o. dual structure on labeled source
network and directly apply it to unlabeled target network without adaptation. Both GCN
and GAT are adopted.
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• Traditional domain adaptationmethodsWechooseDAN [27] from discrepancy-based
methods and DANN [34] from adversarial-based methods.

• Domain adaptive network embeddingWe choose the state-of-the-art models from two
aspects (1) utilizing category-level information: CDNE and (2) utilizing global informa-
tion based on GNN: AdaGCN [13], DANE [37], UDAGCN [10], ASN [11], GRADE
[36] and SpecReg [12].

6.3 Implementation details

We use all source labels for training and keep no label on target network for all tasks unless
otherwise stated. The GNNs applied in both baselines and ours have two convolution layers
with hidden dims 128–16 (citation) or 64–16 (twitch) except for CDNE and AdaGCN which
follow their original settings. Node classifier is one-layerMLP for all models. In our proposed
model, PPMImatrix is computed with K=3. To computeMMDpractically, we use the sum of
multiple Gaussian RBF kernels for kernel k(·, ·) and the kernel number is set to 10. Besides,
the training process is implemented by SGD optimizer with momentum of 0.9 and weight
decay of 0.0005 and the convergence is estimated by early stopping. Learning rate lr is set
to 0.02 (citation) and 0.01 (twitch). We set smoothing coefficient r equals to 0.1 for citation
and 0.7 for twitch. Micro-F1 and Macro-F1 are used as metric in the experiments. Micro-F1
assigns equal weight to each sample and is defined as follows:

F1mi = 2 · Pr · Re
Pr + Re

Pr =
∑C

c=1 TP(c)
∑C

c=1(TP(c) + FP(c))

Re =
∑C

c=1 TP(c)
∑C

c=1(TP(c) + FN(c))

where TP(c), FP(c) and FN(c) indicate the total number of true positives, false positives,
and false negatives associated with class c, respectively. Similarly, Macro-F1 assigns equal
weight to each class and can be defined as follows:

F1ma = 1

C

C∑

c=1

2 · Pr(c) · Re(c)
Pr(c) + Re(c)

Pr(c) = TP(c)

TP(c) + FP(c)
,

Re(c) = TP(c)

TP(c) + FN(c)

For trade-off terms, γ1 = 0.5 and γ2 = 0.2 are the same among all tasks. For citation
dataset, A→C, C→A, D→A and C→D, α = 10 and β = 3; on D→C, α = 10 and β = 1;
on A→D, α = 20 and β = 3. For twitch dataset, we set α = 50 and β = 4 on all tasks.

6.4 Performance analysis

Firstly, the results on citation dataset are revealed in Table 3. It is obvious that the overall
performance of unsupervised network embedding is much lower due to lack of supervision.
Moreover, single network embedding and traditional domain adaptation methods are not
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Table 2 Dataset statistics

Datasets Type #Nodes #Edges #Features #Labels

Acmv9 Citation 9360 15,602 6775 5

Citationv1 8935 15,113

Dblpv7 5484 8130

ENGB(EN) Twitch 7126 35,324 3170 2

PTBR(PT) 1912 31,299

RU 4385 37,304

ES 4648 59,383

FR 6549 112,667

Table 3 Averaged micro-F1 scores over 10 runs on citation dataset

A→C A→D C→A C→D D→A D→C AVG(↑) VAR(↓)
VGAE 0.3766 0.293 0.2819 0.293 0.2819 0.3766 0.3172 0.0021

GCN 0.7244 0.6750 0.6991 0.7079 0.6455 0.6994 0.6919 0.0008

Dual GCN 0.7509 0.6978 0.7158 0.7241 0.6696 0.7201 0.7131 0.0007

GAT 0.5904 0.5614 0.6191 0.6159 0.6013 0.6949 0.6138 0.0020

Dual GAT 0.6431 0.6100 0.6258 0.6901 0.6797 0.6308 0.6466 0.0010

DAN 0.5714 0.5297 0.5565 0.5590 0.5003 0.5223 0.5399 0.0007

DANN 0.5673 0.5535 0.5553 0.5785 0.5311 0.5627 0.5581 0.0003

CDNE 0.7891 0.7203 0.7752 0.7415 0.7659 0.7961 0.7647 0.0008

UDAGCN 0.7328 0.6983 0.6589 0.7177 0.5238 0.6873 0.6698 0.0058

ASN 0.8203 0.7686 0.7919 0.7693 0.7217 0.7913 0.7772 0.0011

AdaGCN 0.7305 0.6916 0.6895 0.7258 0.6656 0.7171 0.7034 0.0006

DANE 0.7023 0.6603 0.6700 0.6674 0.6817 0.7449 0.6878 0.0010

GRADE 0.7561 0.7225 0.6903 0.7484 0.6654 0.7256 0.7181 0.0009

SpecReg 0.6214 0.6453 0.6278 0.6530 0.5819 0.6449 0.6291 0.0007

Ours 0.8313 0.7568 0.7985 0.7932 0.7689 0.8272 0.7960 0.0009

We also compute the average score and variance over all six tasks
We mark the best performance within a task with bold letter and we also underline the second best result

comparable to domain adaptive network embedding methods because they fail to capture
either domain discrepancy or network topology. In particular, although DAN and DANN uti-
lize domain adaptation technique, they are still not comparable to single network embedding
methods mainly because they fail to model network topology. Thus, we further compare dif-
ferent domain adaptive network embedding methods on twitch dataset and report the results
in Table 4. Table 5 illustrates the complementary results on both datasets with Macro-F1.

As Tables 3, 4 and 5 reveal, the proposed model outperforms all domain adaptive network
embedding baselines on most cross-network node classification tasks. Compared to GNN-
baseddomain adaptive network embeddingbaselines,we achieve performancegain up to 10%
on citation dataset and 13% on twitch dataset with Micro-F1. Such benefit could reach 32%
and 17% on two datasets with Macro-F1, respectively. It should be noted that although some
baselines perform well with Micro-F1, their performance drops significantly with Macro-F1,
such as ASN. Another competitive baseline, GRADE, underperforms on citation datasets,
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Fig. 3 Model performance changes with ratio of source network labels gradually increasing from 50 to 100%.
From left to right: (1) Up: A→C, C→D, D→A, D→C (2) Bottom:EN→RU, RU→EN, EN→FR, FR→EN

despite exhibiting strong performance on the twitch dataset. To summarize, as the proposed
model consistently outperforms on both datasets under various metrics, we could prove
the superiority of exploiting category-level information. It is worth mentioning that such
superiority is more significant on citation dataset, likely due to its larger class variety.

Compared with CDNE on two datasets, we achieve performance gain up to 3% and 11%
with Micro-F1, while such benefit reaches 4% and 5% with Macro-F1. The main reason is
threefold. First, CDNE ignores inter-class domain discrepancy, which would mix up nodes
in different classes from two networks. CDNE assumes that nodes belonging to any given
class are equally probable, and it does not factor in the probabilities associated with nodes
belonging to specific classes when computing intra-class domain discrepancy. Consequently,
such computation is inaccurate. Moreover, the pseudo-labeling strategy of CDNE does not
model embedding distribution or network topology, which could reduce the accuracy of
pseudo-labels.

In addition, we further valid the robustness of our model from two aspects. At first, we
compute the variance among all classification tasks in the same dataset. Since the difficulty
of tasks can vary due to differences in feature distribution, label distribution, and network
topology, an effective model should exhibit minimal fluctuation across tasks while maintain-
ing competitive performance. As Table 3 and Table 4 reveal, our model not only displays
relatively lower variance compared to competitive baselines but also sustains superior per-
formance, corroborating the model’s stability and efficiency. Furthermore, we also conduct
experiment on the cases where the source network is not fully labeled. We vary labeling
ratio from 0.5 to 1 and compare the performance of different models. Figure3 reveals the
result, which indicates that our model is minimally affected by a reduction in the number of
labeled source nodes, thereby preserving its competitiveness. This resilience can be attributed
to the effective use of category-level information, which enhances the transfer of labeling
knowledge (Fig. 4).

We subsequently verify the convergence of our model from two distinct perspectives.
Firstly, we study the change of Dintra during training and report the results in Fig. 5, given its
crucial role in indicating the quality of adaptation. According to Theorems 1 and 2, as our
model gradually decreases Dintra (M) during training and finally, reaches the lowest Dintra,
it could reach a more tighter upper bound for target error εT (h) after convergence. Therefore,
our model achieves the best performance. Furthermore, we study the convergence speed in
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Fig. 4 Themicro-f1 increases with training.From left to right: (1) Up: C→D,D→C,A→C, C→A (2) Bottom:
EN→RU, RU→EN, RU→PT, FR→EN

Fig. 5 Intra-class domain discrepancy computed with groundtruth labels decreases with training. From left to
right: (1) Up: C→D, D→C, A→C, C→A (2) Bottom: EN→RU, RU→EN, RU→PT, FR→EN

terms of epochs. Although our model updates multiple times with mini-bathes in one epoch,
it converges much faster overall as Fig. 4 shows.

Lastly, we observe an interesting phenomenon from Table 3 that without adaptation,
the performance of GAT is much worse than GCN, but it surpasses GCN after applying
adaptation. This phenomenon could be attributed to the initial lack of effective learning of
target embeddings, leading to the calculation of noisy weight coefficients based on these
embeddings, thus failing to accurately represent the importance of neighboring nodes.

6.5 Ablation study

We demonstrate the necessity and effectiveness of each model component based on eight
variants and report the results in Table 6. First of all, we exclude adaptation from our model,
i.e., remove Dintra − Dinter from objective Eq. 7. This results in a significant drop in per-
formance, underscoring the criticality of domain adaptation. Sequentially, we remove two
important components for adaptation in turn. The first removed component is inter-class
domain discrepancy, which results in a performance drop of about 1.4% and 2.8% on two
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Fig. 6 Parameter search for α, β, S, r and K . Up: from left to right C→D, C→A, EN→FR, RU→FR, search
for α, β. Bottom: from left to right r , d, S, K . The y-axis refers to Micro-F1 score in all plots, and red marks
indicate the optimal point

datasets, respectively. The second removed component is probability of nodes belonging to
each class, where we instead assume an equal class-probability for all nodes, which results
in a 7% and 4% performance decline on two datasets, respectively. As Theorem 1 and 2 have
demonstrated that such probability is indispensable for theoretical guarantee, the noticeable
performance drop is reasonable.

We then validate the effectiveness of pseudo-labeling strategy. Firstly, we directly use clas-
sifier predictions on target nodes as pseudo-labels. This variant performs the worst because
neither network homophily nor embedding distribution is explicitly modeled. Furthermore,
the unstable performance of classifier in the initial stage also degrades the quality of pseudo-
labels. We further keep our strategy but remove label smoothing and the variant performs
slightly worse than original one, which proves exploiting network homophily is necessary.
Furthermore, we prove the effectiveness of Lentropy and Lnet by removing them, respectively,
in another two variants which cause performance drop of about 1–2%.

Lastly, we implement a GCN version by replacing GAT in femb with GCN for further
evaluation. It is worth mentioning that although GCN version has a slight performance drop
compared to the originalmodel, it still achieves the best overall result against baselines and the
performance improvement is still significant, which achieves 0.8–11.5% on citation dataset
and 1.2–5.2% on twitch dataset, respectively. Such phenomenon also proves the superiority
of exploiting category-level information.

6.6 Parameter sensitivity

We study the sensitiveness of important parameters and report the result in Fig. 6. First of all,
as α and β are two important trade-off terms to balance between adaptation and classification,
we study their impacts on the performance. When domain discrepancy term is empirically
much smaller than classification error, increasing α could boost performance (as seen with
the twitch dataset), whereas it might diminish performancewhen themagnitudes of two terms
are approximately similar(as seen with the citation dataset). The value of β should also be
smaller when discrepancy term is empirically small. Regarding S, we expect the mini-batch
size, 2·S·C , not to be too large because larger sizewould increasemore noisewhen computing
domain discrepancy. Thus, although S is larger on twitch dataset, excessively increasing S
would degrade performance on both datasets. For label smoothing parameter r , we set it to a
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Fig. 7 Visualization of node embeddings in task D→C. Different colors stand for different classes, while dark
and light of the same color represent the same class on two networks

small value when the empirical phenomenon of network homophily is remarkable to further
smooth pseudo-labels, but basically r = 0.8 could boost performance on both datasets.
Lastly, we study the impact of embedding dimension h and the step K of PPMI matrix. We
find that increasing h to 16 or K to 3 could boost performance, but keep increasing their
values would not bring more benefits and would increase complexity.

6.7 Visualization

In Fig. 7, we present a visualization of the embeddings output by GNN-based models, includ-
ing the proposed model, using t-SNE [51]. One striking observation from the visualization
of the proposed model is the close alignment of dark and light shades of the same color.
This indicates that our model effectively minimizes intra-class domain discrepancy between
networks, clustering most node embeddings from both networks within the same class. Addi-
tionally, the distinct boundaries between different colors attest to the discriminative nature of
the embeddings produced by the proposed model, thereby demonstrating it effectively max-
imizes intra-class domain discrepancy and enlarges inter-class embedding variation. Such
phenomenon guarantees a better classification performance. In contrast, as evidenced in
Fig. 7, the baselines fall short in both adaptation and classification performance. These visu-
alization results corroborate the superiority of our approach which leverages category-level
information.

7 Conclusion

We propose category-level domain adaptive network embedding via Graph Attention Net-
work for node classification across networks. The key idea is to minimize intra-class domain
discrepancy and maximize inter-class domain discrepancy between source and target net-
works, concurrently reducing intra-class variation and enlarging inter-class variation within
target network at the same time. Theoretical analysis and experiments prove the effectiveness
of ourmodel. Since our currentmodel only utilizes a single network as source network, gener-
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alizing to multi-source scenario is challenging and should be more applicable. Also, adapting
our model to heterogeneous networks will be beneficial for more practical applications.
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