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Abstract—Social networks have been the widespread popular
tools for communication and socialization, and it also been
the ideal platform for bots to publish malicious information.
Therefore, social bot detection is essential for the social network’s
security. Existing methods almost ignore the differences in bot
behaviors in multiple domains. Thus, we first propose a Domain-
Aware detection method with Multi-Relational Graph neural net-
works (DA-MRG) to improve detection performance. Specifically,
DA-MRG constructs multi-relational graphs with users’ features
and relationships, obtains the user presentations with graph
embedding and distinguishes bots from humans with domain-
aware classifiers. Meanwhile, considering the similarity between
bot behaviors in different social networks, we believe that sharing
data among them could boost detection performance. However,
the data privacy of users needs to be strictly protected. To
overcome the problem, we implement a study of federated learn-
ing framework for DA-MRG to achieve data sharing between
different social networks and protect data privacy simultaneously.
We conduct extensive experiments on TwiBot-20, and the results
demonstrate that the proposed method can effectively achieve
federated social bot detection.

Index Terms—social bot detection, federated learning, social
network

I. INTRODUCTION

Nowadays, social networks have become the necessary
platforms for people to communicate and socialize, which is
also essential for publishing information. Due to its widespread
popularity and its open nature, it is the ideal platform for bots
to achieve malicious goals. These bot accounts spread fake
news and promote extreme ideology [1], and they also try to
imitate the behaviors of normal users for hiding themselves.
Therefore, effective bot detection methods are desperately
needed for social networks.

Recent works usually extract the features from the user
profile and adopt neural networks, such as RNN and GNN,
to obtain user presentations, which would be fitted to a binary
classifier (human vs. bot). According to our observation, the
bots in different domains always have diverse characteristics.
As shown in Fig. 1, the real-world sample bot in the domain of
politics focuses on political topics habitually, and its neighbors

� Corresponding author.

 a sample bot in Business domain  a sample bot in Politics domain

Followers: 1361   Friends: 2298   Favorites: 30750  
Statuses: 37970

Followers: 6661   Friends: 2012   Favorites: 3961  
Statuses: 640

Fig. 1. The real-world bot samples in different domains. Orange dots indicate
the users in business domain, blue dots indicate users in politics domain and
green stars indicate users who are in multi-domains.

are in the same domain. In contrast, the sample bot in
the business domain is concerned with everyday topics and
interacts with business users. Thus, we believe the diversity
of bots in different domains can assist us in distinguishing
between humans and bots, which is seldom considered in
existing methods.

Apart from that, because of the high costs for labeling
bots, sharing data among multiple social networks would
promote the accuracy of the detection method with the fact that
domain-specific bots in different social networks always be-
have similarly. However, due to the requirement of data privacy
protection, it is scarcely possible to implement centralized
training by aggregating a large of data from all social networks
directly. Therefore, it is necessary to improve the ability of
the bot detection methods to exchange information among
multiple social networks and protect data privacy simultane-
ously. As an effective method, Federated learning has been
proposed for handling the problem of data silos resulting from
data privacy [2] and has gained a noteworthy achievement.
Nevertheless, it is not introduced into bot detection in the
social network yet, as we know. Therefore, our work focuses
on handling federated social bot detection.

To solve the above problems, we propose a domain-aware
federated social bot detection method. Firstly, we obtain
the user presentation based on multi-relational graph neural
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networks and design domain-aware classifiers to promote
detection performance according to our observation in Fig. 1.
Secondly, we adopt a federated learning framework to bal-
ance data sharing among social networks and data privacy
protection. We evaluate the proposed model with a real-world
dataset, and the results indicate that our model outperforms
comparable baseline models. Significantly, the detection per-
formance of the model in the federated learning framework
can achieve almost the same level with centralized training.
The main contributions of our work are as follows:

• To the best of our knowledge, we are the first to pro-
pose federated bot detection in social networks, which
introduces federated learning into social bot detection
for sharing data across different social networks while
protecting data privacy.

• We construct multi-relational graphs and fuse the domain-
aware knowledge of accounts to boost the detection per-
formance. Furthermore, a federated learning framework
is adopted with our model to overcome the challenge of
data privacy protection.

• Extensive experiments are conducted on TwiBot-20, and
the results demonstrate that the proposed method can
effectively improve the accuracy of social bot detection.
Our model also achieves comparable performance with
centralized training and other parallel training in the
federated learning framework.

The rest of this paper is organized as follows. The Sec. II
review related work for social bot detection and federated
learning. The framework and components of our model are
described in Sec. III. The dataset, experimental settings and
results are shown in Sec. IV. Finally, we summarize this paper
in Sec. V.

II. RELATED WORK

In this section, we briefly review the related research works
of social bot detection, graph neural network and federated
learning.

A. Social Bot Detection

Early bot detection methods extract features from user
profiles [3]–[5], tweets [6], etc. and apply the traditional
classifiers, such as Random Forest models [7], to detect bots
in social networks. In addition, Gao et al. [8] identify six
features and adopt incremental clustering to distinguish spam
campaigns in real-time. Thomas et al. [9] design a real-time
system to determine whether the URLs in web services are
direct to spam content. All of those can be considered feature
engineering methods.

Because of the outstanding achievements of deep learning,
increasing detection models based on neural networks are
proposed. Kudugunta et al. [10] utilizes the LSTM architecture
to detect bots and considers both tweet context features
and contextual features from user metadata. Similarly, Wei
et al. [11] adopts the BiLSTM with word embeddings to
capture features across tweets and distinguish bots from human
accounts. SpamGAN [12] is a generative adversarial network

that relies on a limited set of labeled data and unlabeled data
for opinion spam detection. SATAR [13], a self-supervised
representation learning framework for bot detection, jointly
leveraging the semantics, property and neighborhood infor-
mation of the specific user. Recently, researchers have pro-
posed detection methods via the graph structure with multiple
relations [14], [15]. Ali et al. [16] first attempts to apply
graph convolutional networks in bot detection. Feng et al. [14]
constructs a heterogeneous information network and utilizes
relational GNNs to obtain user presentations for bot detection.
However, these methods almost ignore the domain information
of user, which is important for the task in our observation.

B. Graph Neural Networks

Graph Neural Network (GNN) aims to generate the nodes’
representations in low-dimensional space based on a message-
passing mechanism. The classical methods, such as GCN [17],
GraphSAGE [18], and GAT [19], generate the nodes’ represen-
tations by aggregating their neighbors’ features. Particularly,
GraphSAGE samples neighbors to fit the large graph, and GAT
adopts the attention mechanism to measure the importance of
neighbors. Simultaneously, some works [20]–[23] believe that
the local structural features of a graph are valuable to preserve
the spatial information in nodes’ representations.

Considering varied types of nodes and relationships in
graphs, the GNN frameworks of the heterogeneous infor-
mation network (HIN) and the multi-relational graph have
extensively studied and achieved significant success in di-
verse applications, such as community detection and anomaly
detection. LUCE [24] applies HIN to model the multiple
relationships between house entities for the property price
prediction task, FRAUDRE [25] takes a multi-relation graph
as the input to predict the label of fraudsters and normal
users, and FinEvent [26] adopts a weighted multi-relational
graph neural network for social events detection. Based on the
expositions that the multi-relational graph can more explicitly
differentiate relation types [27], [28], we construct multi-
relational graphs in our model for social bot detection.

C. Federated Learning

For the rising issues of data privacy, Google first proposes
the concept of federated learning to build machine learning
models based on data sets from multiple devices while achiev-
ing data privacy protection [29], [30]. Furthermore, Yang et
al. [31] summary to the comprehensive federated-learning
framework to horizontal federated learning, vertical federated
learning and federated transfer learning. With the advance
of federated learning, some practical algorithms have been
proposed by researchers, such as FedAvg, FedAMP, FedProx,
FedNova and FedMV, and have been employed in various
areas [32]–[35]. FedAvg [36] is the fundamental and well-
studied algorithm of federated learning, where the global
model is learned by averaging the parameters of local models
trained on private client datasets. FedProx [37] uses a proximal
term to generalize and re-parameterize FedAvg. FedAMP [38]
proposes to utilize federated attentive message passing to

 



facilitate pairwise collaborations among clients with similar
data. FedNova [39] is a normalized averaging method that
eliminates objective inconsistency while preserving fast error
convergence. FedMV [40] proposes a federated framework for
the multi-view data, where participants have different types of
local data availability. Due to the efficiency of FedAvg, in this
paper, we mainly follow the idea of FedAvg to implement the
federated learning framework for bot detection.

III. METHODOLOGY

A. Overview

In this section, we propose a framework named DA-MRG
for bot detection. We first construct multi-relational graphs
from the initial user features and the origin graph for the task.
And then, a user representation learning module, consisting
of a series of graph embedding layers and semantic attention
layers, is designed to obtain the representation for each user.
Finally, we propose domain-aware classifiers to discriminate
bots from humans. The overall architecture of our methods
is shown in Fig. 2. Furthermore, we introduce a federated
learning framework for DA-MRG to implement the joint
training among multiple participants.

B. Multi-Relational Graph Generator

In a social network, We can obtain a multi-relational graph
G = {V,X,E, Y } based on the interactive behaviors between
users, where V = {v1, v2, ..., vn} is the set of user nodes, X
is the initial features of all user nodes, and n is the number of
users. eri,j ∈ E is an edge between vi and vj with a relation
r ∈ {1, ..., R}, indicating an interactive behavior between user
i and user j. Such as user i follows user j or user i comments
user j. Y is the set of labels for all users.

Then, We present a multi-relational graph generator to
generate the relational graph Gr for the origin graph G. The
generator consists of edge separating and feature learning.

Edge Separating. We first generate all relational graphs
{Gr}|Rr=1 by reserving the relation r between users in the
whole graph. Thus, the set of edges in Gr is Er. We add the
two nodes of each edge eri,j in Er to the nodes set Vr, as
with nodes’ features and labels. The relational graph Gr can
be denoted as

Gr = {Vr, Xr, Er, Yr}. (1)

Feature Learning. Following the assumption that the fea-
tures of the same user have a different effect on different
relational graphs, we learn the features for each relational
graph independently:

X̂r = σ(Wr ·Xr + br), (2)

where Xr is the initial features of nodes in Gr, and σ(·) is
non-linearity.

C. User Representation Learning Module

In this module, we obtain the final high-level representation
for each user by a series of graph embedding layers and
semantic attention layers. Particularly, we first gain the repre-
sentations for each node in all relational graphs via multiple
GNN-based graph embedding layers. Then we aggregate the
representations of each node for final embedding based on the
semantic attention networks.

Multi-Relational Graph Embedding Layer. We first con-
struct a GNN-based graph embedding layer to obtain the
representation for a specific node in each relational graph Gr

in this module, which is shown as below:

z(l)r (N i
r) = mean({z(l−1)

r (vj),∀vj ∈ {vi} ∪N i
r}), (3)

where N i
r is the set of vi’s 1-hop neighborhood in Gr,

and z
(l−1)
r (vj) is the representation of vj in the (l − 1)-th

layer of GNNs. And we use the node features X̂r as the
initial representation in the 0-th layer. Then, we gain vi’s
presentations in the l-th layer of GNNs as follows:

z(l)r (vi) = σ(W (l)
r · z(l)r (N i

r) + b(l)r ), (4)

where W
(l)
r and b

(l)
r ) are learnable parameters. And zr(vi)

is used as the final representation for vi in the GNN-based
embedding layer.

Semantic Attention Layer. Each user node’s representations
in multiple relational graphs are gained via multiple GNN-
based embedding layers. Considering the diverse importance
of relations, we adopt a semantic attention layer to fuse all
representations of each user node.

Firstly, we introduce a relational preference vector ar ∈
RR∗d

′

for the relation r. For vi’s representation zr(vi) in
the specific relation r, the weight assigned to zr(vi) for its
contribution depends on the similarity between ar and zr(vi).
To obtain the weight, we first transform d-dimension zr(vi)
into d

′
-dimension hr(vi):

hr(vi) = σ(Wr · zk(vi) + br), (5)

where σ(·) is non-linearity and we use tanh in the paper.
Then, we calculate the similarity between ar and hr(vi) as
follows:

wr(vi) =
aTr · hr(vi)

∥ar∥ · ∥hr(vi)∥
, (6)

where ∥·∥ is the L2 normalization of vectors. The weight
assigned to relation r for node vi is normalized with softmax
as follows:

αr(vi) =
exp(wr(vi))∑

r′∈R exp(wr′ (vi))
. (7)

Finally, we fuse node vi’s representations in all relations:

z(vi) =
∑
r∈R

αr(vi) · zr(vi). (8)
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Fig. 2. Overview of DA-MRG. Given the initial graph and features as input, DA-MRG consists of the three steps: (1) Multi-Relational Graph Generator
learns features and separates edges for each relation; (2) User Representation Learning module learns users’ high-level representations based on a series of
GNN-based embedding layers and semantic attention layers; (3) Domain-Aware Classifiers feds the representations and distinguishes bots from humans.

D. Domain-Aware Classifiers

After the user representation learning module, we obtain
the final high-level representation zv for each user node v.
Generally, existing methods consider the detection task as a
binary classification and the node’s representations are fed
into a multiple fully connected neural network to gain the
prediction:

ŷv = σ(MLP (zv)), (9)

where σ(·) denotes the activation function and ŷv is the
predicted label of node v. Furthermore, Cross-Entropy is
applied as the optimizer. Inspired by the observation that
social bots in different domains have obvious differences, we
propose the domain-aware classifiers to promote the detection
performance. Specifically, we first train a bot classifier for each
domain d ∈ Dd|Md=1:

Pd(v) = softmax(Wd · zv + bd), (10)

where Pd(v) denotes v’s bot probability in domain d. And
then, we acquire the bot probability for v as follows:

Pb(v) = Max({Pi(v)}|Mi=0), (11)

where M is the number of domains. Similarly, we train the
human classifier:

Ph(v) = softmax(Wh · zv + bh), (12)

where Ph(v) denotes v’s human probability. Thus, we obtain
the predicted label as ŷ = argmax([Ph, Pb]) and determine
the final predicted bot probability as:

prob =

{
1− Ph, ŷ = 0

Pb, ŷ = 1
(13)

E. Federated learning

Due to the data privacy issues, we cannot collect data
from multiple Social Network Services (SNSs) for central-
ized model training. Thus, we introduce a federated learning
framework to address the problem. Each SNS, participating
in the model training, downloads the global model from the
server, trains with its own data, and uploads the trained model
to the server, which aggregates models from all participants.

Specifically, suppose that K SNSs are contributing the
federated learning in each round, the k-th participant calculates
the local gradient of the model in round t according to Eq. 14.

gk = △Fk(ωt), (14)

where ωt is the global parameters download from the server in
the t-th round and each participant updates its own parameters
locally as follows:

∀k, ω(k)
t+1 ← ωt − ηgk. (15)

Then, the server aggregates local parameters uploaded from
all participants as Eq. 16:

ωt+1 ←
K∑

k=1

nk

n
ω
(k)
t+1, (16)

where nk is the data size of k-th participant, and ωt+1 is
distributed to each participant in the (t + 1)-th round. The
details are shown in Fig. 3.

In our work, the federated learning framework combined
with the proposed model DA-MRG to implement the social
bot detection across multiple social networks. We focus on
exploring the influence of the number of participants and the
amount of data in each participant. The overall process of our
method is shown in Algorithm 1.
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Fig. 3. The architecture of the federated learning framework. Firstly, the
global model is initialized in the server sent to all participants. And then,
each participant trains the model locally with its own data and uploads the
model to the server. Finally, the server updates the global model and distribute
it to participants in the next round.

IV. EXPERIMENTS AND EVALUATION

A. Dataset

Because DA-MRG requires multi-relational graphs for
users, we evaluate our method on TwiBot-20 [41], which is the
only publicly available bot detection dataset with user follow
relationships as we know. The dataset contains 5,237 human
accounts and 6,589 bot accounts with their property items,
tweets, and follow accounts. Apart from that, all accounts
could be generally split into four domains: politics, business,
entertainment and sports.

B. Baseline Methods

Firstly, we compare our proposed model DA-MRG against
some existing social bot detection methods.

• Lee et al. [3] and Yang et al. [5] both apply random forest
classifier with user features to detect bots in social.

• Miller et al. [4] extracts features from user tweets and
properties and proposes a modified stream clustering
algorithm to identify bot accounts.

• Cresci et al. [6] encodes users’ online actions as digital
DNA sequences and applies DNA analysis techniques to
discriminate between genuine and spambot accounts.

• Botometer [7] is a public online service that leverages
more than one thousand features to classify accounts.

• Kudugunta et al. [10], Wei et al. [11] and SATAR [13]
extract features from user tweets, metadata, etc., and
utilize recurrent neural networks to discover bot accounts.

• Ali et al. [16] and BotRGCN [14] construct the graph
based on user relationships and gain the user representa-
tions with the graph neural networks to distinguish bots
from humans.

Especially, the results of these baseline methods come from
BotRGCN [14].

Algorithm 1: The Overall Process of Our Method
Input: Initial graph: G, Initial features: X , Layers of

User Representation Learning: L, Local Epoch:
E, Batch Size: B, Number of Communication:
C, Number of Participant: K.

Output: Bot probability of each node vi, vi ∈ V .
1 ModelTraining():
2 Construct multi-relational graphs {Gr}|Rr=1 by Eq.

(1), (2)
3 for l = 1, 2, ..., L do
4 for r ∈ R do
5 zr(v)← Eq. (3), (4);
6 αr(v)← Eq. (5), (6), (7);

7 z(v)← Eq. (8)

8 label, prob← Eq. (10), (11), (12), (13)
9 loss← BCELoss()

10

11 LocalTraining(k, ωc):
12 for e = 1, 2, ..., E do
13 update the local model by ωc

14 for b = 1, 2, ..., B do
15 loss← ModelTraining()
16 ωk

c+1 ← Eq. (14), (15)

17 Return ω
(k)
c+1 to the server

18

19 ServerExecutes():
20 for c = 1, 2, ..., C do
21 for k ∈ K do
22 ω

(k)
c+1 ← LocalTraining(k, ωc)

23 ωc+1 ← Eq. (16)

Simultaneously, in order to verify the effectiveness of our
model in FedAvg, we compare the framework with the fol-
lowing methods.

• Local Training means we train DA-MRG locally at each
participant by its own data, without any interaction among
participants. The data of each participant in our experi-
ments is a subset of the whole training set, generated as
Section IV-C.

• CDS [42] is a centralized machine learning strategy
training DA-MRG on the central server by collecting all
participants’ data.

• CIIL [42], [43] trains the model at each participant
locally with consistent training epochs and repeatedly
loops through all participants.

C. Implementation Details

We select follower and following as the multiple relations to
construct the multi-relational graphs for DA-MRG. Moreover,
Considering the computational cost and the number of param-
eters in the model, we adopt GraphSAGE [18] as the graph

 



neural network in the user representation learning module. In
addition, to evaluate the federated learning framework with
DA-MRG, we randomly assign each participant a unique
subset. Firstly, we divide the whole training set into 12 parts
evenly and test the training effect of the number of participants
at {4, 8, 12}. And then, in order to test the training effect of the
data size, we fix the number of participants at 8 and increase
the data size of each participant from 100 to 2000. We adopt
Accuracy, F1-score and MCC to estimate the performance of
our method in all experiments.

The common parameters of model training are set as learn-
ing rate 5e− 4, batch size 256, dropout 0.3, L2 regularization
weight λ 3e − 5 and the dimension of the final embeddings
32. All experiments are conducted on a 64 core Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20GHz with 128GB RAM
and a Tesla P100-PICE GPU with 16GB memory. Our model
is implemented using pytorch 1.8.1 as the backend.

D. Experiment Results

In this section, We first evaluate the detection performance
of DA-MRG on TwiBot-20 [41] and study the effectiveness of
domain-aware classifiers and the influence of pivotal experi-
ment settings. Then, comparing with other training strategies,
we estimate our model’s performance with the federated
learning framework. In our experiments, the performances are
reported with the best results.

1) Performance Comparison: The results shown in Table I
demonstrate that DA-MRG obtains better accuracy, F1-score
and MCC than all other compared methods on TwiBot-20.
Generally, deep learning-based methods usually perform better
than those based on features engineering and traditional ma-
chine learning. Although all based on graph neural networks,
our method has noticeable improvements over Ali et al. [16]
and BotRGCN [14], which preliminarily illustrates that DA-
MRG better utilizes the domain information of accounts for
bot detection.

TABLE I
PERFORMANCE OF DIFFERENT DETECTION METHODS.

Method Tags Accuracy F1 score MCC
Lee et al. [3]

Classic
ML

0.7456 0.7823 0.4879
Yang et al. [5] 0.8191 0.8546 0.6643
Cresci et al. [6] 0.4793 0.1072 0.0839
Miller et al. [4] 0.4801 0.6266 -0.1372
Botometer [7] 0.5584 0.4892 0.1558
Kudugunta et al. [10]

RNN
0.8174 0.7517 0.6710

Wei et al. [11] 0.7126 0.7533 0.4193
SATAR [13] 0.8412 0.8642 0.6863
Ali et al. [16]

GNN
0.6813 0.7318 0.3543

BotRGCN [14] 0.8462 0.8707 0.7021
Ours 0.8698 0.8847 0.7392

2) Training Ratio Analysis: The performance of our model
with different training ratios is shown in Fig. 4. The result
illustrates that our model suffers slight performance degrada-
tion with the decrease of training ratio, which implies that
a small of labeled data is enough for the model. Specifically,
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Fig. 5. Ablation studying removing domain-aware module from our model

our method outperforms all other compared methods with 60%
training data.

3) Ablation study: Compared with other GNN-based meth-
ods, our model applies the user’s domain information to assist
the classification. Thus, we conduct an ablation study to
evaluate the effectiveness of this module. The results in Fig. 5
show that all metrics would have some loss, especially MCC,
when we remove the domain-aware classifiers. It demonstrates
that the domain information is indeed valuable to improve
detection performance.

4) Parameter Sensitivity: In this section, we investigate
how parameters can affect prediction performance. The results
are reported in Fig. 6.

Dimension of node embedding. Considering that the
dimension of node embedding determines the presentation
ability of GNN-based methods, we first explore the impact of
various dimension {16, 32, 64, 128, 256}. Fig. 6 (a) indicts
that the result achieves the best performance at the dimension
of 32 and then degenerates with increases of dimension. We
consider that a larger dimension could introduce excessive
valueless information.
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Fig. 6. Parameter sensitivity: Dimension of node embedding and Number of
layers.

Number of user representation layer. We vary the layer
number in the user representation learning module from 1 to 3
and evaluate its impact on prediction performance. As shown
in Fig. 6 (b), 2-layer user representation learning can gain a
better result in our model, while 3-layer may be confronted
with overfitting.

5) Federated Learning Study: In this section, we evaluate
the performance of DA-MRG combined with federated the
learning framework in two experiments, fixing the number of
participants and fixing the data size of the local training set.

Number of participants. The results in Table II show the
prediction effect of increasing participants. Limited by the
constant amount of data held by each participant and without
any interactive process, local training always has the most
unsatisfactory results. At the same time, CDS can achieve the
best prediction effect with global data sharing. Generally, the
performances of FedAvg and CIIL maintain at a certain level
with CDS, which means that our method can well adapt to the
parallel training.

TABLE II
RESULTS OF THE FEDAVG EXPERIMENT I.

Number of
Participant Method Accuracy F1 score MCC

4

Local Training 0.8107 0.8346 0.6198
CDS 0.8453 0.8629 0.6892
FedAvg 0.8385 0.8582 0.6763
CIIL 0.8436 0.8622 0.6864

8

Local Training 0.8091 0.8369 0.6201
CDS 0.8597 0.8781 0.7214
FedAvg 0.8575 0.8711 0.7123
CIIL 0.8563 0.8702 0.7104

12

Local Training 0.8191 0.8424 0.6375
CDS 0.8639 0.879 0.7268
FedAvg 0.8571 0.8734 0.7133
CIIL 0.8597 0.8752 0.7181

Size of the local training data. Table III shows the per-
formance of increasing the size of the data set owned by each
participant. Similar to the last experiment, the performance of
local training is the worst. All other three methods achieve
the best results when the size of local data is 1000. However,
the prediction performance declines with the increase of local
data size, particularly FedAvg. We consider that the model
is affected by repeated data among participants. When the

data size is greater than 1500, since the sum of data in all
participants exceeds the total amount of training data, there
are duplicate data among participants.

TABLE III
RESULTS OF THE FEDAVG EXPERIMENT II.

Size of
Local Data Method Accuracy F1 score MCC

100

Local Training 0.7134 0.7349 0.4231
CDS 0.8157 0.8411 0.6321
FedAvg 0.8047 0.8280 0.6069
CIIL 0.8056 0.8276 0.6082

500

Local Training 0.7988 0.8208 0.5942
CDS 0.8470 0.8648 0.6929
FedAvg 0.8352 0.8544 0.6688
CIIL 0.8436 0.8639 0.6880

1000

Local Training 0.8267 0.8530 0.6585
CDS 0.8631 0.8763 0.7241
FedAvg 0.8622 0.8745 0.7222
CIIL 0.8588 0.8753 0.7171

1500

Local Training 0.8233 0.8439 0.6446
CDS 0.8597 0.8752 0.7181
FedAvg 0.8555 0.8702 0.7089
CIIL 0.8538 0.8706 0.7066

2000

Local Training 0.8369 0.8613 0.6790
CDS 0.8605 0.8738 0.7189
FedAvg 0.8588 0.8724 0.7155
CIIL 0.8580 0.8739 0.7148

Both experiments indicate that training the model with
federated learning across multiple social networks is an ap-
propriate solution, which promotes the performance obviously
than local training at each participant.

V. CONCLUSION

In this paper, we first propose a domain-aware social bot de-
tection method based on the multi-relational graph, DA-MRG,
to distinguish bot accounts from human accounts. Firstly,
DA-MRG constructs multi-relational graphs with relations
between users. Secondly, The model learns each user’s high-
level presentation via the user representation learning module,
consisting of a series of graph embedding layers and semantic
attention layers. Lastly, we fed the presentations to the domain-
aware bot classifiers. We conduct various experiments to
evaluate the model and the results indicate that our method can
obtain better detection performance. In addition, the federated
learning framework, FedAvg, is introduced to overcome the
data privacy problem in data sharing among multiple social
networks. And then, we explore the performance of DA-MRG
with FedAvg through extensive experiments and demonstrate
the efficiency of solving the problem of data islands.
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