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ABSTRACT
DBSCAN is widely used in many scientific and engineering fields
because of its simplicity and practicality. However, due to its high
sensitivity parameters, the accuracy of the clustering result de-
pends heavily on practical experience. In this paper, we first pro-
pose a novel Deep Reinforcement Learning guided automatic DB-
SCAN parameters search framework, namely DRL-DBSCAN. The
framework models the process of adjusting the parameter search
direction by perceiving the clustering environment as a Markov
decision process, which aims to find the best clustering parame-
ters without manual assistance. DRL-DBSCAN learns the optimal
clustering parameter search policy for different feature distribu-
tions via interacting with the clusters, using a weakly-supervised
reward training policy network. In addition, we also present a
recursive search mechanism driven by the scale of the data to effi-
ciently and controllably process large parameter spaces. Extensive
experiments are conducted on five artificial and real-world datasets
based on the proposed four working modes. The results of offline
and online tasks show that the DRL-DBSCAN not only consis-
tently improves DBSCAN clustering accuracy by up to 26% and
25% respectively, but also can stably find the dominant parame-
ters with high computational efficiency. The code is available at
https://github.com/RingBDStack/DRL-DBSCAN.

CCS CONCEPTS
• Information systems→ Clustering; • Computing method-
ologies → Artificial intelligence.
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1 INTRODUCTION
Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) [15] is a typical density based clustering method that deter-
mines the cluster structure according to the tightness of the sample
distribution. It automatically determines the number of final clusters
according to the nature of the data, has low sensitivity to abnormal
points, and is compatible with any cluster shape. In terms of appli-
cation areas, benefiting from its strong adaptability to datasets of
unknown distribution, DBSCAN is the preferred solution for many
clustering problems, and has achieved robust performance in fields
such as financial analysis [27, 54], commercial research [18, 52],
urban planning [37, 43], seismic research [19, 31, 50], recommender
system [25, 34], genetic engineering [20, 41], etc.

However, the two global parameters of DBSCAN, the distance of
the cluster formation 𝐸𝑝𝑠 and the minimum data objects required
inside the cluster𝑀𝑖𝑛𝑃𝑡𝑠 , that need to be manually specified, bring
Three challenges to its clustering process. First, parameters free
challenge. 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 have considerable influence on the
clustering effect, but it needs to be determined a priori. The method
based on the 𝑘-distance [39, 40] estimates the possible values of
the 𝐸𝑝𝑠 through significant changes in the curve, but it still needs
to manually formulate 𝑀𝑖𝑛𝑝𝑡𝑠 parameters in advance. Although
some improved DBSCAN methods avoid the simultaneous adjust-
ment of 𝐸𝑝𝑠 and𝑀𝑖𝑛𝑃𝑡𝑠 to varying degrees, but they also necessary
to pre-determine the cutoff distance parameter [13], grid param-
eter [12], Gaussian distribution parameter [47] or fixed 𝑀𝑖𝑛𝑝𝑡𝑠

parameter [2, 26]. Therefore, the first challenge is how to perform
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Figure 1: Markov process of parameter search. The agent uses
the data as the environment, and determines the action to
search by observing the clustering state and reward.

DBSCAN clustering without tuning parameters based on expert
knowledge. Second, adaptive policy challenge. Due to the dif-
ferent data distributions and cluster characteristics in clustering
tasks, traditional DBSCAN parameter searching methods based on
fixed patterns [39, 40] encounter bottlenecks in the face of uncon-
ventional data problems. Moreover, hyperparameter optimization
methods [5, 30, 36] using external clustering evaluation index based
on label information as objective functions are not effective in the
absence of data label information. The methods [35, 57] that only
use the internal clustering evaluation index as the objective func-
tion, are limited by the accuracy problem, despite that they do not
require label information. In addition, for streaming data that needs
to be clustered continuously but the data distribution is constantly
changing, the existing DBSCAN parametric search methods do
not focus on how to use past experience to adaptively formulate
search policies for newly arrived data. Thus, how to effectively and
adaptively adjust the parameter search policy of the data and be
compatible with the lack of label information is regarded as the
second challenge. Third, computational complexity challenge.
Furthermore, the parameter search is limited by the parameter space
that cannot be estimated. Searching too many invalid parameters
will increase the search cost [29], and too large search space will
bring noise interfering with clustering accuracy [14]. Hence, how to
quickly search for the optimal parameters while securing clustering
accuracy is the third challenge that needs to be addressed.

In recent years, Deep Reinforcement Learning (DRL) [22, 38] has
been widely used for tasks lacking training data due to its ability
to learn by receiving feedback from the environment [44]. In this
paper, to handle the problem of missing optimal DBSCAN parame-
ter labeling and the challenges above, we propose DRL-DBSCAN,
a novel, adaptive, recursive Deep Reinforcement Learning DB-
SCAN parameter search framework, to obtain optimal parameters
in multiple scenarios and tasks stably. We first take the cluster
changes after each step of clustering as the observable state, the
parameter adjustment direction as the action, and transform the
parameter search process into a Markov decision process in which
the DRL agents autonomously perceive the environment to make

decisions (Fig. 1). Then, through weak supervision, we construct
reward based on a small number of external clustering indices, and
fuse the global state and the local states of multiple clusters based
on the attention mechanism, to prompt the agents to learn how
to adaptively perform the parameter search for different data. In
addition, to improve the learning efficiency of the policy network,
we optimize the base framework through a recursive mechanism
based on agents with different search precisions to achieve the high-
est clustering accuracy of the parameters stably and controllable.
Finally, considering the existence of DBSCAN clustering scenarios
with no labels, few labels, initial data, and incremental data, we
designed four working modes: retraining mode, continuous train-
ing mode, pre-training test mode, and maintenance test mode for
compatibility. We extensively evaluate the parameter search perfor-
mance of DRL-DBSCAN with four modes for the offline and online
tasks on the public Pathbased, Compound, Aggregation, D31 and
Sensor datasets. The results show that DRL-DBSCAN can break
away from manually defined parameters, automatically and effi-
ciently discover suitable DBSCAN clustering parameters, and has
stability in multiple downstream tasks.

The contributions of this paper are summarized as follows: (1)
The first DBSCAN parameter search framework guided by DRL is
proposed to automatically select the parameter search directions.
(2) A weakly-supervised reward mechanism and a local cluster
state attention mechanism are established to encourage DRL agents
to adaptively formulate optimal parameter search policy based on
historical experience in the absence of annotations/labels to adapt
the data distribution fluctuations. (3) A recursive DRL parameter
search mechanism is designed to provide a fast and stable solution
for large-scale parameter space problem. (4) Extensive experiments
in both offline and online tasks are conducted to demonstrate that
the four modes of DRL-DBSCAN have advantages in improving
DBSCAN accuracy, stability, and efficiency.

2 PROBLEM DEFINITION
In this section, we give the definitions of DBSCAN clustering, pa-
rameter search of DBSCAN clustering, and parameter search in
data stream clustering.

Definition 1. (DBSCAN clustering). The DBSCAN clustering is
the process of obtaining clusters C = {𝑐1, ..., 𝑐𝑛, 𝑐𝑛+1, ...} for all data
objects {𝑣1, ..., 𝑣 𝑗 , 𝑣 𝑗+1, ...} in a data block V based on the param-
eter combination 𝑷 = {𝐸𝑝𝑠,𝑀𝑖𝑛𝑃𝑡𝑠}. Here, 𝐸𝑝𝑠 is the maximum
distance that two adjacent objects can form a cluster, and 𝑀𝑖𝑛𝑃𝑡𝑠

refers to the minimum number of adjacent objects within 𝐸𝑝𝑠 that
an object can be a core point. The formation of the clusters can
be understood as the process of connecting the core points to its
adjacent objects within 𝐸𝑝𝑠 [15] (as shown in Fig. 1).

Definition 2. (Parameter search in offline DBSCAN cluster-
ing). Given the data blockV = {𝑣1, ..., 𝑣 𝑗 , 𝑣 𝑗+1, ...}, the parameter
search of DBSCAN is the process of finding the optimal parameter
combination 𝑷 = {𝐸𝑝𝑠,𝑀𝑖𝑛𝑃𝑡𝑠} for clustering in all possible pa-
rameter spaces. Here, the feature set X of data objects in blockV
is {𝑥1, ..., 𝑥 𝑗 , 𝑥 𝑗+1, ...}.

Definition 3. (Parameter search in online DBSCAN cluster-
ing). Given continuous and temporal 𝑇 data blocks {V1, ...,V𝑡 ,
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Figure 2: The core model of DRL-DBSCAN. (a) Recursive mechanism, takes 3-layer 6 × 6 parameter space as an example, with
layerwise decreasing parameter space. (b) One layer DRL-DBSCAN, takes the search process in the 1-th layer of the recursive
mechanism as an example, aims to obtain the optimal parameter combination in the parameter space of layer 1.

V𝑡+1, ...} as the online data stream, we define the parameter search
in online clustering as the process of obtaining the parameter com-
bination 𝑷𝑡 = {𝐸𝑝𝑠𝑡 , 𝑀𝑖𝑛𝑃𝑡𝑠𝑡 } of the data block V𝑡 = {𝑣𝑡,1, ..., 𝑣𝑡, 𝑗 ,
𝑣𝑡, 𝑗+1, ...} at each time 𝑡 ∈ 𝑇 .

3 DRL-DBSCAN FRAMEWORK
The proposed DRL-DBSCAN has a core model (Fig. 2) and four
working modes (Fig. 3) that can be extended to downstream tasks.
We firstly describe the basic Markov decision process for parameter
search (Sec. 3.1), and the definition of the clustering parameter
space and recursion mechanism (Sec. 3.2). Then, we explain the
four DRL-DBSCAN working modes (Sec. 3.3).

3.1 Parameter Search with DRL
Faced with various clustering tasks, the fixed DBSCAN parameter
search policy no longer has flexibility. We propose an automatic pa-
rameter search framework DRL-DBSCAN based on Deep Reinforce-
ment Learning (DRL), in which the core model can be expressed
as a Markov Decision Process 𝑀𝐷𝑃 (S,A,R,P) including state
set, action space, reward function and policy optimization algo-
rithm [42]. This process transforms the DBSCAN parameter search
process into a maze game problem [8, 56] in the parameter space,
aiming to train an agent to search for the end point parameters
step by step from the start point parameters by interacting with the
environment, and take the end point (parameters in the last step)
as the final search result of an episode of the game (as shown in
Fig. 2). Specifically, the agent regards the parameter space and DB-
SCAN clustering algorithm as the environment, the search position
and clustering result as the state, and the parameter adjustment
direction as the action. In addition, a small number of samples are
used to reward the agent with exceptional behavior in a weakly

supervised manner. We optimize the policy of agent based on the
Actor-Critic [33] architecture. Specifically, the search process for
episode 𝑒 (𝑒 = 1, 2, ...) is formulated as follows:

• State: Since the state needs to represent the search environ-
ment at each step as accurately and completely as possible, we
consider building the representation of the state from two aspects.

Firstly, for the overall searching and clustering situation, we use
a 7-tuple to describe the global state of the 𝑖-th step (𝑖 = 1, 2, ...):

𝒔 (𝑒) (𝑖)
𝑔𝑙𝑜𝑏𝑎𝑙

= 𝑷 (𝑒) (𝑖) ∪ D (𝑒) (𝑖)
𝑏

∪
{
𝑅
(𝑒) (𝑖)
𝑐𝑛

}
. (1)

Here, 𝑷 (𝑒) (𝑖) = {𝐸𝑝𝑠 (𝑒) (𝑖) ,𝑀𝑖𝑛𝑃𝑡𝑠 (𝑒) (𝑖) } is the current parameter
combination. D (𝑒) (𝑖)

𝑏
is the set of quaternary distances, including

the distances of 𝐸𝑝𝑠 (𝑒) (𝑖) from its space boundaries 𝐵𝐸𝑝𝑠,1 and
𝐵𝐸𝑝𝑠,2, the distances of𝑀𝑖𝑛𝑃𝑡𝑠 (𝑒) (𝑖) from its boundaries 𝐵𝑀𝑖𝑛𝑃𝑡𝑠,1

and 𝐵𝑀𝑖𝑛𝑃𝑡𝑠,2, 𝑅
(𝑒) (𝑖)
𝑐𝑛 =

|C (𝑒 ) (𝑖 ) |
|V | is the ratio of the number of

clusters |C (𝑒) (𝑖) | to the total object number of data block |V|. Here,
the specific boundaries of parameters will be defined in Sec. 3.2.

Secondly, for the description of the situation of each cluster, we
define the {𝑑 + 2}-tuple of the 𝑖-th local state of cluster 𝒄𝑛 ∈ C as:

𝒔 (𝑒) (𝑖)
𝑙𝑜𝑐𝑎𝑙,𝑛

= X (𝑒) (𝑖)
𝑐𝑒𝑛𝑡,𝑛 ∪

{
𝐷
(𝑒) (𝑖)
𝑐𝑒𝑛𝑡,𝑛, |𝒄

(𝑒) (𝑖)
𝑛 |

}
. (2)

Here, X (𝑒) (𝑖)
𝑐𝑒𝑛𝑡,𝑛 is the central object feature of the 𝒄𝑛 , and 𝑑 is its

feature dimension.𝐷 (𝑒) (𝑖)
𝑐𝑒𝑛𝑡,𝑛 is the Euclidean distance from the cluster

center object to the center object of the entire data block. |𝒄 (𝑒) (𝑖)𝑛 |
means the number of objects contained in cluster 𝒄𝑛 .

Considering the change of the number of clusters at different
steps in the parameter search process, we use the Attention Mecha-
nism [48] to encode the global state and multiple local states into a
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fixed-length state representation:

𝒔 (𝑒) (𝑖) = 𝜎

(
𝑭𝐺 (𝒔 (𝑒) (𝑖)

𝑔𝑙𝑜𝑏𝑎𝑙
) ∥

∑︁
𝒄𝑛 ∈C

𝜶𝑎𝑡𝑡,𝑛 · 𝑭𝐿 (𝒔 (𝑒) (𝑖)𝑙𝑜𝑐𝑎𝑙,𝑛
)
)
, (3)

where 𝑭𝐺 and 𝑭𝐿 are the Fully-Connected Network (FCN) for the
global state and the local state, respectively. 𝜎 represents the ReLU
activation function. And | | means the operation of splicing. 𝛼𝑎𝑡𝑡,𝑛
is the attention weight of cluster 𝒄𝑛 , which is formalized as follows:

𝜶𝑎𝑡𝑡,𝑛 =

𝜎

(
𝑭𝑆

(
𝑭𝐺 (𝒔 (𝑒) (𝑖)

𝑔𝑙𝑜𝑏𝑎𝑙
) ∥ 𝑭𝐿 (𝒔 (𝑒) (𝑖)𝑙𝑜𝑐𝑎𝑙,𝑛

)
) )

∑
𝒄𝑛 ∈C 𝜎

(
𝑭𝑆

(
𝑭𝐺 (𝒔 (𝑒) (𝑖)

𝑔𝑙𝑜𝑏𝑎𝑙
) ∥ 𝑭𝐿 (𝒔 (𝑒) (𝑖)𝑙𝑜𝑐𝑎𝑙,𝑛

)
) ) . (4)

We concatenate the global state with the local state of each cluster
separately, input it into a fully connected network 𝑭𝑆 for scoring,
and use the normalized score of each cluster as its attention coeffi-
cient. This approach establishes the attention to the global search
situation when local clusters are expressed. At the same time, it
also makes different types of cluster information have different
weights in the final state expression, which increases the influence
of important clusters on the state.

• Action: The action 𝒂 (𝑒) (𝑖) for the 𝑖-th step is the search di-
rection of parameter. We define the action space A as {𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡,
𝑑𝑜𝑤𝑛,𝑢𝑝, 𝑠𝑡𝑜𝑝}, where 𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡 means to reduce or increase
the 𝐸𝑝𝑠 parameter, 𝑑𝑜𝑤𝑛 and 𝑢𝑝 means to reduce or increase the
𝑀𝑖𝑛𝑃𝑡𝑠 parameter, and 𝑠𝑡𝑜𝑝 means to stop searching. Specifically,
we build an Actor [33] as the policy network to decide action 𝒂 (𝑒) (𝑖)

based on the current state 𝒔 (𝑒) (𝑖) :

𝒂 (𝑒) (𝑖) = 𝐴𝑐𝑡𝑜𝑟 (𝒔 (𝑒) (𝑖) ) . (5)

Here, the 𝐴𝑐𝑡𝑜𝑟 is a three-layer Multi-Layer Perceptron (MLP).
In addition, the action-parameter conversion process from the

𝑖-th step to the 𝑖 + 1-th step is defined as follows.

𝑷 (𝑒) (𝑖) 𝒂 (𝑒 ) (𝑖 ) , 𝜽−−−−−−−−→ 𝑷 (𝑒) (𝑖+1) . (6)

Here, 𝑷 (𝑒) (𝑖) and 𝑷 (𝑒) (𝑖+1) are the parameter combinations {𝐸𝑝𝑠 (𝑒) (𝑖) ,
𝑀𝑖𝑛𝑃𝑡𝑠 (𝑒) (𝑖) } and {𝐸𝑝𝑠 (𝑒) (𝑖+1) , 𝑀𝑖𝑛𝑃𝑡𝑠 (𝑒) (𝑖+1) } of the 𝑖-th step and
the 𝑖 + 1-th step, respectively. 𝜽 is the increase or decrease step size
of the action. We discuss the step size in detail in Sec. 3.2. Note that
when an action causes a parameter to go out of bounds, the param-
eter is set to the boundary value and the corresponding boundary
distance is set to −1 in the next step.

• Reward: Considering that the exact end point parameters are
unknown but rewards need to be used to motivate the agent to
learn a better parameter search policy, we use a small number of
samples of external metrics as the basis for rewards. We define the
immediate reward function of the 𝑖-th step as:

R(𝒔 (𝑒) (𝑖) , 𝒂 (𝑒) (𝑖) ) = 𝑁𝑀𝐼
(
𝐷𝐵𝑆𝐶𝐴𝑁 (X, 𝑷 (𝑒) (𝑖+1) ),Y ′)

)
. (7)

Here, 𝑁𝑀𝐼 (, ) stands for the external metric function, Normalized
Mutual Information (NMI) [16] of 𝐷𝐵𝑆𝐶𝐴𝑁 clustering. X is the
feature set. Y ′ is a set of partial labels of the data block. Note that
the labels are only used in the training process, and the testing
process performs search on unseen data blocks without labels.

In addition, the excellent parameter search action sequence for
one episode is to adjust the parameters in the direction of the
optimal parameters, and stop the search at the optimal parameters.
Therefore, we consider using both the maximum immediate reward

for subsequent steps and the endpoint immediate reward as the
reward in the 𝑖-th step:

𝒓 (𝑒) (𝑖) = 𝛽 ·max
{
R(𝒔 (𝑒) (𝑚) , 𝒂 (𝑒) (𝑚) )

}
|𝐼𝑚=𝑖 +𝛿 · R(𝒔 (𝑒) (𝐼 ) , 𝒂 (𝑒) (𝐼 ) ),

(8)
where R(𝒔 (𝑒) (𝐼 ) , 𝒂 (𝑒) (𝐼 ) ) is the immediate rewards for the 𝐼 -th step
end point parameters. And max is used to calculate the future max-
imum immediate reward before stopping the search in current
episode 𝑒 . 𝛽 and 𝛿 are the impact factors of reward, where 𝛽 = 1−𝛿 .

• Termination: We determine the termination conditions for a
complete episode search process as follows:

min(D (𝑒) (𝑖)
𝑏

) < 0, Out of bounds stop,
𝑖 >= 𝐼𝑚𝑎𝑥 , Timeout stop,
𝒂 (𝑒) (𝑖) = 𝑠𝑡𝑜𝑝,𝑤ℎ𝑒𝑟𝑒 𝑖 ≥ 2, Active stop.

(9)

Here, 𝐼𝑚𝑎𝑥 is the maximum search step size in an episode.
• Optimization: The parameter search process in the episode

𝑒 is expressed as: 1) observe the current state 𝒔 (𝑒) (𝑖) of DBSCAN
clustering; 2) and predict the action 𝒂 (𝑒) (𝑖) of the parameter adjust-
ment direction based on 𝒔 (𝑒) (𝑖) through the 𝐴𝑐𝑡𝑜𝑟 ; 3) then, obtain
the new state 𝒔 (𝑒) (𝑖+1) ; 4) repeat the above process until the end of
episode, and get reward 𝒓 (𝑒) (𝑖) for each step. The core element of
the 𝑖-th step is extracted as:

T (𝑒) (𝑖) = (𝒔 (𝑒) (𝑖) , 𝒂 (𝑒) (𝑖) , 𝒔 (𝑒) (𝑖+1) , 𝒓 (𝑒) (𝑖) ) . (10)

We put T of each step into the memory buffer and sample𝑀 core
elements to optimize the policy network 𝐴𝑐𝑡𝑜𝑟 , and define the key
loss functions as follows:

L𝑐 =
∑︁𝑀

T∈𝑏𝑢𝑓 𝑓 𝑒𝑟
(
𝒓 (𝑒) (𝑖) + 𝛾 ·𝐶𝑟𝑖𝑡𝑖𝑐 (𝒔 (𝑒) (𝑖+1) , 𝒂 (𝑒) (𝑖+1) )−

𝐶𝑟𝑖𝑡𝑖𝑐 (𝒔 (𝑒) (𝑖) , 𝒂 (𝑒) (𝑖) )
)2
, (11)

L𝑎 = −
∑𝑀

T∈𝑏𝑢𝑓 𝑓 𝑒𝑟𝐶𝑟𝑖𝑡𝑖𝑐
(
𝒔 (𝑒) (𝑖) , 𝐴𝑐𝑡𝑜𝑟 (𝒔 (𝑒) (𝑖) )

)
𝑀

. (12)

Here, we define a three-layer MLP as the 𝐶𝑟𝑖𝑡𝑖𝑐 to learn the action
value of state [33], which is used to optimize the𝐴𝑐𝑡𝑜𝑟 . And𝛾 means
reward decay factor. Note that we use the policy optimization algo-
rithm named Twin Delayed Deep Deterministic strategy gradient
algorithm (TD3) [22] in our framework, and it can be replaced with
other DRL policy optimization algorithms [33, 38].

3.2 Parameter Space and Recursion Mechanism
In this section, we will define the parameter space of the agent
proposed in the previous section and the recursive search mecha-
nism based on different parameter spaces. Firstly, in order to deal
with the fluctuation of the parameter range caused by different data
distributions, we normalize the data features, thereby transforming
the maximum 𝐸𝑝𝑠 parameter search range into the (0,

√
𝑑] range.

Unlike 𝐸𝑝𝑠 , the𝑀𝑖𝑛𝑃𝑡𝑠 parameter must be an integer greater than
0. Therefore, we propose to delineate a coarse-grained𝑀𝑖𝑛𝑃𝑡𝑠 max-
imum parameter search range according to the size or dimension
of the dataset. Subsequently, considering the large parameter space
affects the efficiency when performing high-precision parameter
search, we propose to use a recursive mechanism to perform a
progressive search. The recursive process is shown in Fig. 2. We
narrow the search range and increase the search precision layer
by layer, and assign a parameter search agent 𝑎𝑔𝑒𝑛𝑡 (𝑙) defined in
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(a) Retraining Mode (b) Continuous Training Mode (c) Pretraining Testing Mode (d) Maintenance Testing Mode
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Figure 3: Four working modes. Dark orange squares refer to partially labeled data, and light orange squares are unlabeled data.

Sec. 3.1 to each layer 𝑙 to search for the optimal parameter com-
bination 𝑷 (𝑙)

𝑜 = {𝐸𝑝𝑠 (𝑙)𝑜 , 𝑀𝑖𝑛𝑃𝑡𝑠
(𝑙)
𝑜 } under the requirements of the

search precision and range of the corresponding layer. The mini-
mum search boundary 𝐵

(𝑙)
𝑝,1 and maximum search boundary 𝐵

(𝑙)
𝑝,2

of parameter 𝑝 ∈ {𝐸𝑝𝑠,𝑀𝑖𝑛𝑃𝑡𝑠} in the 𝑙-th layer (𝑙 = 1, 2, ...) are
defined as:

𝐵
(𝑙)
𝑝,1 : max

{
𝐵
(0)
𝑝,1 , 𝑝

(𝑙−1)
𝑜 −

𝜋𝑝

2
· 𝜃 (𝑙)𝑝

}
,

𝐵
(𝑙)
𝑝,2 : min

{
𝑝
(𝑙−1)
𝑜 +

𝜋𝑝

2
· 𝜃 (𝑙)𝑝 , 𝐵

(0)
𝑝,2

}
.

(13)

Here, 𝜋𝑝 is the number of searchable parameters in the parameter
space of parameter 𝑝 in each layer. 𝐵 (0)

𝑝,1 and 𝐵
(0)
𝑝,2 are the space

boundaries of parameter 𝑝 in the 0-th layer, which define the maxi-
mum parameter search range. 𝑝 (𝑙−1)𝑜 ∈ 𝑷 (𝑙−1)

𝑜 is the optimal param-
eter searched by the previous layer, and 𝑝 (0)𝑜 ∈ 𝑷 (0)

𝑜 is the midpoint
of 𝐵 (0)

𝑝,1 and 𝐵
(0)
𝑝,2 . In addition, 𝜃 (𝑙)𝑝 is the search step size, that is,

the search precision of the parameter 𝑝 in the 𝑙-th layer, which is
defined as follows:

𝜃
(𝑙)
𝑝 =


𝜃
(𝑙−1)
𝑝

𝜋𝑝
, 𝑖 𝑓 𝑝 = 𝐸𝑝𝑠 ;

max
{
⌊ 𝜃

(𝑙−1)
𝑝

𝜋𝑝
+ 1

2 ⌋, 1
}
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(14)

Here, 𝜃 (𝑙−1)𝑝 is the step size of the previous layer and 𝜃 (0)𝑝 is the size
of the parameter maximum search range. ⌊⌋ means round down.
Complexity Discussion: It is known that the minimum search
step size of the recursive structure with layers 𝐿 is 𝜃 (𝐿)𝑝 . Then the
computational complexity when there is no recursive structure is
𝑂 (𝑁 ), where 𝑁 the size of the parameter space 𝜃 (0)𝑝 /𝜃 (𝐿)𝑝 = (𝜋𝑝 )𝐿 .
And DRL-DBSCAN with 𝐿-layer recursive structure only takes
𝐿 · (𝜋𝑝 ), reducing the complexity from 𝑂 (𝑁 ) to 𝑂 (𝑙𝑜𝑔 𝑁 ).

3.3 Proposed DRL-DBSCAN
Algorithm 1 shows the process of the proposed DRL-DBSCAN core
model. Given a data block V with partial label Y ′, the training
process repeats the parameter search process (Lines 6-10) for mul-
tiple episodes at each layer to optimize the agent (Line 14). In this
process, we update the optimal parameter combination (Line 15
and Line 17 based on the immediate reward (Eq. (7)). In order to im-
prove efficiency, we build a hash table to record DBSCAN clustering
results of searched parameter combinations, thereby no additional
operations are required for repeated paths. In addition, we estab-
lished early stopping mechanisms to speed up the training process

Algorithm 1: The core model of DRL-DBSCAN
Input: The features X and partial labels Y ′ of block V;

Agents for each layer: {𝑎𝑔𝑒𝑛𝑡 (𝑙) }|𝐿𝑚𝑎𝑥

𝑙=1 ;
Output: Optimal parameter combination: 𝑷𝑜 ;

1 for 𝑙 = 1, ..., 𝐿𝑚𝑎𝑥 do
2 Initialize parameter space via Eq. (13) and Eq. (14);
3 for 𝑒 = 1, ..., 𝐸𝑚𝑎𝑥 do
4 Initialize 𝑷 (𝑒) (0) by 𝑷 (𝑙−1)

𝑜 ;
5 for 𝑖 = 1, ..., 𝐼𝑚𝑎𝑥 do
6 Obatin the current state 𝒔 (𝑒) (𝑖) via Eq. (3);
7 Choose the action 𝒂 (𝑒) (𝑖) via Eq. (5);
8 Get new parameters 𝑷 (𝑒) (𝑖) via Eq. (6);
9 Clustering using the current parameters;

10 Termination judgment via Eq. (9);
11 if is TRAIN then
12 Get rewards 𝒓 (𝑒) (𝑖) via Eq. (8), ∀𝑖 ∈ {1, 𝐼 };
13 Store T (𝑒) (𝑖) in buffer via Eq. (10), ∀𝑖 ∈ {1, 𝐼 };
14 Sampling and learning via Eq. (12) and Eq. (11);

15 Update optimal parameter combination 𝑷 (𝑙)
𝑜 ;

16 Early stop judgment;
17 Update optimal parameter combination 𝑷𝑜 ;
18 Early stop judgment;

when the optimal parameter combination does not change (Line 16
and Line 18). It is worth noting that the testing process uses the
trained agents to search directly with one episode, and does not
set the early stop. Furthermore, the testing process does not need
labels, and the end point parameters of the unique episode of the
last layer are used as the final optimal parameter combination.

In order to better adapt to various task scenarios, we define four
working modes of DRL-DBSCAN as shown in Fig. 3. Their corre-
sponding definitions are as follows: (1) Retraining Mode (𝐷𝑅𝐿𝑟𝑒 ).
The optimal parameters are searched based on the training process.
When the dataset changes, the agent at each layer is reinitialized.
(2) Continuous Training Mode (𝐷𝑅𝐿𝑐𝑜𝑛). The agents are pre-
trained in advance. When the dataset changes, continue searching
based on the training process using the already trained agents. (3)
Pretraining Testing Mode (𝐷𝑅𝐿𝑎𝑙𝑙 ). The agents are pre-trained
in advance. When the dataset changes, searching directly based
on the testing process without labels. (4) Maintenance Testing
Mode (𝐷𝑅𝐿𝑜𝑛𝑒 ). The agents are pre-trained in advance. When the
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dataset changes, searching directly based on the testing process
without labels. After pre-training, regular maintenance training is
performed with labeled historical data.

4 EXPERIMENTS
In this section, we conduct experiments mainly including the follow-
ing: (1) performance comparison over DRL-DBSCAN and baseline
in offline tasks (Sec. 4.2); (2) performance analysis of DRL-DBSCAN
and its variants, and advantage comparison between four working
modes in online tasks (Sec. 4.3); (3) sensitivity analysis of hyperpa-
rameters and their impact on the model (Sec. 4.4).

4.1 Experiment Setup
Datasets. To fully analyze our framework, the experimental dataset
consists of 4 artificial clustering benchmark datasets and 1 public
real-world streaming dataset (Table 1). The benchmark datasets [21]
are the 2𝐷 shape sets, including: Aggregation [23], Compound
[55], Pathbased [11], and D31 [49]. Furthermore, the real-world
streaming dataset Sensor [58] comes from consecutive information
collected from 54 sensors deployed by the Intel Berkeley Research
Lab. We use a subset of 80, 864 for experiments and divide these
objects into 16 data blocks (V1, ...,V16) as an online dataset.
Baseline and Variants. We compare proposed DRL-DBSCAN
with three types of baselines: (1) traditional hyperparameter search
schemes: random search algorithm Rand [6], Bayesian optimiza-
tion based on Tree-structured Parzen estimator algorithm BO-TPE
[5]; (2) meta-heuristic optimization algorithms: the simulated an-
nealing optimization Anneal [32], particle swarm optimization
PSO [46], genetic algorithm GA [36], and differential evolution
algorithm DE [45]; (3) existing DBSCAN parameter search meth-
ods: KDist (V-DBSCAN) [39] and BDE-DBSCAN [30]. The detailed
introduction to the above methods are given in Sec. 5. We also
implement four variants of DRL-DBSCAN to analysis of state, re-
ward and recursive mechanism settings in Sec. 3.1. Compared with
DRL-DBSCAN, 𝐷𝑅𝐿𝑛𝑜−𝑎𝑡𝑡 does not join local state based on the
attention mechanism, 𝐷𝑅𝐿𝑜𝑛𝑙𝑦−𝑚𝑎𝑥 only uses the maximum fu-
ture immediate reward as final reward, 𝐷𝑅𝐿𝑟𝑒𝑐𝑢 has no early stop
mechanism, and 𝐷𝑅𝐿𝑟𝑒𝑐𝑢 has no recursion mechanism.
Implementation Details. For all baselines, we use open-source
implementations from the benchmark library Hyperopt [7] and
Scikit-opt [1], or provided by the author. All experiments are con-
ducted on Python 3.7, 36 core 3.00GHz Intel Core 𝑖9 CPU, and
NVIDIA RTX 𝐴6000 GPUs.
Experimental Setting. The evaluation of DRL-DBSCAN is based
on the four working modes proposed in Sec. 3.3. Considering the
randomness of most algorithms, all experimental results we report
are the means or variances of 10 runs with different seeds (except
KDist because it’s heuristic and doesn’t involve random problems).
Specifically, for the pre-training andmaintenance training processes
of DRL-DBSCAN, we set the maximum number of episodes 𝐸𝑚𝑎𝑥

to 50, and do not set the early stop mechanism. For the training
process for searching, we set the maximum number of episodes
𝐸𝑚𝑎𝑥 to 15. In offline tasks and online tasks, the maximum number
of recursive layers 𝐿𝑚𝑎𝑥 is 3 and 6, respectively, and the maximum
search boundary in the 0-th layer of𝑀𝑖𝑛𝑃𝑡𝑠 𝐵

(0)
𝑀𝑖𝑛𝑃𝑡𝑠,2 is 0.25 and

Table 1: Characteristics of Datasets.
Type Dataset Classes Size Dim. Time

Offline

Pathbased 3 300 2 ×
Compound 6 399 2 ×
Aggregation 7 788 2 ×

D31 31 3100 2 ×
Online Sensor 54 80640 5 ✓

0.0025 times the size of block, respectively. In addition, we use the
unified label training proportion 0.2, the 𝐸𝑝𝑠 parameter space size
𝜋𝐸𝑝𝑠 5, the𝑀𝑖𝑛𝑃𝑡𝑠 parameter space size 𝜋𝑀𝑖𝑛𝑃𝑡𝑠 4, the maximum
number of search steps 𝐼𝑚𝑎𝑥 30 and the reward factor 𝛿 0.2. The
FCN and MLP dimensions are uniformly set to 32 and 256, the
reward decay factor 𝛾 of Critic is 0.1, and the number of samples
𝑀 from the buffer is 16. Furthermore, all baselines use the same
objective function (Eq. (7)), parameter search space, and parameter
minimum step size as DRL-DBSCAN if they support the settings.
Evaluation Metrics. We evaluate the experiments in terms of accu-
racy and efficiency. Specifically, we measure the clustering accuracy
based on normalized mutual information (NMI) [16] and adjusted
rand index (ARI) [51]. For the efficiency, we use the consumed
DBSCAN clustering rounds as the measurement.

4.2 Offline Evaluation
Offline evaluation is based on four artificial benchmark datasets.
Since there is no data for pre-training in offline scenarios, we only
compare the parameter search performance of DRL-DBSCAN using
the retraining mode 𝐷𝑅𝐿𝑟𝑒 with baselines.
Accuracy and Stability Analysis. In Table 2, we summarize the
means and variances of the NMI and ARI corresponding to the
optimal DBSCAN parameter combinations that can be searched by
𝐷𝑅𝐿𝑟𝑒 and baselines within 30 clustering rounds. It can be seen
from the mean accuracy results of ten runs that in the Pathbased,
Compound, Aggregation, and D31 datasets, 𝐷𝑅𝐿𝑟𝑒 can effectively
improve the performance of 4% & 6%, 3% & 3%, 20% & 26% and 5% &
26% on NMI and ARI, relative to the best performing baselines. At
the same time, as the dataset size increases, the advantage of 𝐷𝑅𝐿𝑟𝑒
compared to other baselines in accuracy gradually increases. Fur-
thermore, the experimental variances shows that 𝐷𝑅𝐿𝑟𝑒 improves
stability by 4% & 6%, 1% & 1%, 9% & 13% and 2% & 17% on NMI
and ARI, relative to the best performing baselines. The obvious ad-
vantages in terms of accuracy and stability indicate that 𝐷𝑅𝐿𝑟𝑒 can
stably find excellent parameter combinations in multiple rounds of
parameter search, compared with other hyperparameter optimiza-
tion baselines under the same objective function. Besides, 𝐷𝑅𝐿𝑟𝑒
is not affected by the size of the dataset. Among all the baselines,
PSO and DE are relatively worse in terms of accuracy, because their
search in the parameter space is biased towards continuous param-
eters, requiring more rounds to achieve optimal results. BO-TPE
learns previously searched parameter combinations through a prob-
abilistic surrogate model and strikes a balance between exploration
and exploitation, with significant advantages over other baselines.
The proposed DRL-DBSCAN not only narrows the search space of
parameters of each layer progressively through a recursive struc-
ture, but also learns historical experience, which is more suitable
for searching DBSCAN clustering parameter combinations.
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Table 2: Offline evaluation performance. The best results are bolded and second-best are underlined.

Dataset Metrics Traditional Meta-heuristic Dedicated
Rand BO-TPE Anneal PSO GA DE KDist BDE DRL𝑟𝑒 (Mean) (Var.)

NMI .66±.23 .78±.07 .65±.24 .60±.28 .68±.19 .22±.28 .40±.- - .51±.33 .82±.03 ↑ .04 ↓ .04Pathbased ARI .63±.21 .79±.10 .66±.25 .55±.38 .67±.26 .18±.28 .38±.- - .48±.40 .85±.04 ↑ .06 ↓ .06
NMI .75±.05 .70±.24 .52±.36 .46±.34 .70±.25 .33±.35 .39±.- - .72±.25 .78±.04 ↑ .03 ↓ .01Compound ARI .73±.04 .68±.24 .51±.35 .42±.36 .68±.24 .31±.34 .39±.- - .70±.25 .76±.03 ↑ .03 ↓ .01
NMI .76±.11 .72±.14 .75±.27 .59±.35 .75±.15 .28±.37 .60±.- - .63±.28 .96±.02 ↑ .20 ↓ .09Aggregation ARI .68±.16 .63±.19 .70±.27 .51±.37 .68±.19 .25±.35 .52±.- - .54±.28 .96±.03 ↑ .26 ↓ .13
NMI .31±.33 .23±.24 .17±.19 .36±.33 .23±.20 .24±.26 .07±.- - .41±.36 .67±.02 ↑ .26 ↓ .17D31 ARI .14±.26 .04±.05 .03±.04 .09±.22 .04±.04 .06±.09 .00±.- - .21±.28 .26±.02 ↑ .05 ↓ .02

Figure 4: Offline clustering efficiency comparison.

Figure 5: Efficiency comparison of recursive mechanism.

Efficiency Analysis. We present the average historical maximum
NMI results for𝐷𝑅𝐿𝑟𝑒 and all baselines when consuming a different
number of clustering rounds in Fig. 4. The shade in the figure
represents the fluctuation range (variance) of NMI in multiple runs
(only BO-TPE is also shown with shade as the representative in the
baselines). The results suggest that in the four datasets, 𝐷𝑅𝐿𝑟𝑒 can
maintain a higher speed of finding better parameters than baselines,
and fully surpass all baselines after the 5-th, 12-th, 17-th, and 16-
th rounds, respectively. In the Pathbased dataset, the clustering
rounds of 𝐷𝑅𝐿𝑟𝑒 is 2.49 times faster than that of BO-TPE when
the NMI of the parameter combination searched by 𝐷𝑅𝐿𝑟𝑒 reaches
0.72. Besides, the results show that, with the increase of clustering
rounds, the shadow area of the 𝐷𝑅𝐿𝑟𝑒 curve gradually decreases,
while the shadow range of BO-TPE tends to be constant. The above
observation also demonstrates the good stability of the search when
the number of rounds of DRL-DBSCAN reaches a specific number.

Figure 6: Comparison in online and offline tasks.

DRL-DBSCANVariants.We compare the𝐷𝑅𝐿𝑟𝑒𝑐𝑢 with𝐷𝑅𝐿𝑛𝑜−𝑟𝑒𝑐𝑢
which without the recursion mechanism in Fig. 5. Note that, for
𝐷𝑅𝐿𝑟𝑒𝑐𝑢 , we turn off the early stop mechanism so that it can search
longer to better compare with 𝐷𝑅𝐿𝑛𝑜−𝑟𝑒𝑐𝑢 . The results show that
the first 100 episodes of the recursive mechanism bring the max-
imum search speedup ratio of 6.5, which effectively proves the
contribution of the recursive mechanism in terms of efficiency.
Label Proportion Comparison. Considering the influence of the
proportion of labels participating in training on the DRL-DBSCAN
training process’s reward and the objective function of other base-
lines, we conduct experiments with different label proportions in
Pathbased, and the results are shown in Fig. 6(b) (the vertical lines
above the histograms are the result variances). It can be seen that
under different label proportions, the average NMI scores of 𝐷𝑅𝐿𝑟𝑒
are better than baselines, and the variance is also smaller. Addition-
ally, as the proportion of labels decreases, the NMI scores of most
of the baselines drop sharply, while the 𝐷𝑅𝐿𝑟𝑒 tends to be more or
less constant. These stable performance results demonstrate the
adaptability of DRL-DBSCAN to label proportion changes.

4.3 Online Evaluation
The learnability of RL enables DRL-DBSCAN to better utilize past
experience in online tasks. To this end, we comprehensively evalu-
ate four working modes of DRL-DBSCAN on a streaming dataset,
Sensor. Specifically, the first eight blocks of the Sensor are used
for the pre-training of 𝐷𝑅𝐿𝑐𝑜𝑛 , 𝐷𝑅𝐿𝑎𝑙𝑙 and 𝐷𝑅𝐿𝑜𝑛𝑒 , and the last
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Table 3: Online evaluation NMI for training-based modes. The best results are bolded and second-best are underlined.
Blocks Rand BO-TPE Anneal PSO GA DE KDist BDE DRL𝑟𝑒 DRL𝑐𝑜𝑛 (Mean) (Var.)
V9 .67±.24 .83±.03 .53±.37 .74±.10 .65±.29 .19±.31 .30±.- - .70±.21 .86±.01 .87±.00 ↑ .04 ↓ .03
V10 .36±.15 .50±.07 .45±.17 .50±.20 .43±.15 .15±.17 .20±.- - .37±.20 .50±.27 .64±.06 ↑ .14 ↓ .01
V11 .40±.06 .43±.10 .32±.26 .55±.16 .43±.08 .09±.12 .12±.- - .47±.16 .60±.16 .68±.02 ↑ .13 ↓ .04
V12 .44±.23 .62±.16 .27±.35 .66±.07 .50±.24 .19±.28 .11±.- - .41±.31 .75±.01 .72±.10 ↑ .09 ↓ .06
V13 .84±.06 .87±.04 .72±.38 .68±.26 .76±.17 .38±.38 .62±.- - .68±.23 .92±.02 .92±.02 ↑ .08 ↓ .02
V14 .74±.12 .82±.04 .54±.37 .63±.24 .54±.24 .25±.25 .55±.- - .56±.25 .76±.25 .85±.00 ↑ .03 ↓ .04
V15 .68±.24 .76±.04 .66±.34 .55±.25 .62±.27 .28±.32 .36±.- - .72±.14 .85±.07 .83±.13 ↑ .17 -
V16 .73±.13 .77±.09 .77±.10 .40±.35 .67±.22 .49±.31 .11±.- - .67±.19 .86±.01 .86±.00 ↑ .09 ↓ .09

Table 4: Online evaluation NMI for testing-based modes. The best results are bolded and second-best are underlined.
Blocks Rand BO-TPE Anneal PSO GA DE KDist BDE DRL𝑎𝑙𝑙 DRL𝑜𝑛𝑒 (Mean) (Var.)
V9 .34±.31 .49±.33 .22±.34 .14±.29 .27±.37 .10±.26 .30±.- - .54±.36 .68±.30 .68±.30 ↑ .19 -
V10 .11±.14 .28±.17 .17±.21 .24±.01 .20±.21 .12±.18 .20±.- - .28±.24 .33±.16 .33±.15 ↑ .05 -
V11 .16±.15 .29±.24 .23±.18 .33±.29 .23±.23 .02±.05 .12±.- - .21±.22 .30±.13 .32±.08 - -
V12 .23±.25 .19±.24 .10±.22 .38±.26 .34±.27 .03±.06 .11±.- - .29±.27 .38±.17 .46±.09 ↑ .08 -
V13 .58±.35 .70±.24 .47±.40 .44±.31 .36±.28 .08±.14 .62±.- - .32±.26 .68±.34 .70±.27 - -
V14 .36±.19 .34±.28 .47±.35 .37±.33 .27±.25 .11±.24 .55±.- - .43±.28 .60±.27 .62±.16 ↑ .15 ↓ .03
V15 .45±.35 .38±.36 .37±.33 .30±.34 .36±.32 .09±.18 .36±.- - .42±.31 .64±.28 .70±.03 ↑ .25 ↓ .15
V16 .22±.32 .45±.24 .32±.29 .19±.27 .36±.27 .12±.20 .11±.- - .59±.23 .60±.27 .53±.20 ↑ .01 -

eight blocks are used to compare the results with baselines. Since
baselines cannot perform incremental learning for online tasks,
we initialize the algorithm before each block starts like 𝐷𝑅𝐿𝑟𝑒 . In
addition, both experiments of 𝐷𝑅𝐿𝑎𝑙𝑙 and 𝐷𝑅𝐿𝑜𝑛𝑒 use unseen data
for unlabeled testing, whereas 𝐷𝑅𝐿𝑜𝑛𝑒 uses the labeled historical
data for model maintenance training after each block ends testing.
Accuracy and Stability Analysis. We give the performance com-
parison of training-based modes (𝐷𝑅𝐿𝑟𝑒 and 𝐷𝑅𝐿𝑐𝑜𝑛) and testing-
based modes (𝐷𝑅𝐿𝑎𝑙𝑙 and 𝐷𝑅𝐿𝑜𝑛𝑒 ) of DRL-DBSCAN with the base-
lines in Table 3 and Table 4, respectively. Due to the action space of
DRL-DBSCAN has the 𝑠𝑡𝑜𝑝 action, it can automatically terminate
the search. To control the synchronization of baselines’ experimen-
tal conditions, we use the average clustering rounds consumed
when DRL-DBSCAN is automatically terminated as the maximum
round of baselines for the corresponding task (30 for Table 3 and
16 for Table 4). The results show that the means of NMI scores of
the training-based and testing-based search modes are improved
by about 9% and 9% on average over multiple blocks, respectively,
and the variances of performance are reduced by about 4% and 2%,
respectively. Specifically, Table 3 firstly shows that similar to the
offline tasks, 𝐷𝑅𝐿𝑟𝑒 , which is based on re-training, still retains the
significant advantage in online tasks. Secondly, compared 𝐷𝑅𝐿𝑐𝑜𝑛
which is capable of continuous incremental learning with 𝐷𝑅𝐿𝑟𝑒 ,
𝐷𝑅𝐿𝑐𝑜𝑛 has a performance improvement of up to 14% with a signif-
icant decrease in variance. Third, from Table 4, it can be found that
in testing-based modes, 𝐷𝑅𝐿𝑎𝑙𝑙 and 𝐷𝑅𝐿𝑜𝑛𝑒 without labels (with-
out reward function) can significantly exceed the baselines that
require labels to establish the objective function. Fourth, 𝐷𝑅𝐿𝑜𝑛𝑒
which is regularly maintained has higher performance and less
variance than 𝐷𝑅𝐿𝑎𝑙𝑙 . These results demonstrate the capability of
DRL-DBSCAN to retain historical experience and the advantages of
learnable DBSCAN parameter search for accuracy and stability. In

addition, although KDist can determine parameters without labels
and iterations, its accuracy is relatively low.
Efficiency Analysis. 𝐷𝑅𝐿𝑎𝑙𝑙 and 𝐷𝑅𝐿𝑜𝑛𝑒 automatically search for
the optimal DBSCAN parameters (end point parameters) without
labels. In order to better analyze these two testing-based param-
eter search modes, we compare the number of clustering rounds
required of other methods to reach the NMI scores of the 𝐷𝑅𝐿𝑎𝑙𝑙
end-point parameters in the online tasks (Fig. 6(a)). In the figure,
the short vertical lines are the result variances. We can see that
𝐷𝑅𝐿𝑎𝑙𝑙 reaches the optimal results within the consumption range
of 11-14 rounds, while other baselines require more rounds when
reaching the corresponding NMI. Moreover, many baselines’ round
consumption over different blocks fluctuates significantly, and the
variance in the same block is also large. The above observation
suggests that the parameter search efficiency of DRL-DBSCAN’s
testing-based modes without labels exceeds that of the baselines
which require labels. Additionally, 𝐷𝑅𝐿𝑐𝑜𝑛 consumes fewer rounds
than 𝐷𝑅𝐿𝑟𝑒 when reaching the same NMI, which also proves the
advantage of DRL-DBSCAN’s learning ability in terms of efficiency.
DRL-DBSCAN Variants. To better evaluate the design of states
and rewards in Sec. 3.1, we compare two variants with 𝐷𝑅𝐿𝑎𝑙𝑙 in
the online tasks, namely 𝐷𝑅𝐿𝑛𝑜−𝑎𝑡𝑡 (state has no attention mecha-
nism) and 𝐷𝑅𝐿𝑜𝑛𝑙𝑦−𝑚𝑎𝑥 (reward only based on future maximum
immediate reward). The results in Fig. 6(c) show that the full struc-
ture of 𝐷𝑅𝐿𝑎𝑙𝑙 has better NMI scores than the variants, and brings
the maximum performance increase of 0.16, which represents the
necessity of setting the local state and end point immediate reward.

4.4 Hyperparameter Sensitivity
Fig. 7 shows the results of the offline evaluation of 𝐷𝑅𝐿𝑟𝑒 on the
Pathbased for four hyperparameters. Fig. 7(a) and Fig. 7(b) compare
a set of parameter space sizes of 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 involved in the
Eq. (13), respectively. It can be found that the parameter space that
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is too large or too small for 𝐸𝑝𝑠 will cause performance loss and
a decrease in search efficiency, while 𝑀𝑖𝑛𝑃𝑡𝑠 is less sensitive to
the parameter space’s size change. Fig. 7(c) analyzes the effect of
different numbers of recursive layers on the search results. The
results show that a suitable number of recurrent layers helps to ob-
tain stable performance results. It is worth noting that the number
of layers does not require much tuning, as we use the early-stop
mechanism described in Sec. 3.3 to avoid overgrowing layers. Fig.
7(d) compares the different influence weights of end point imme-
diate reward and future maximum immediate reward on the final
reward (Eq.8). The results show that equalizing the contribution of
the two immediate rewards to the final reward can help improve
the performance of the DRL-DBSCAN.

5 RELATEDWORK
Automatic DBSCAN parameter determination. DBSCAN is
heavily dependent on two sensitive parameters (𝐸𝑝𝑠 and𝑀𝑖𝑛𝑃𝑡𝑠)
requiring prior knowledge for tuning. Numerous works propose dif-
ferent solutions for tuning the above. OPTICS [3] is an extension of
DBSCAN, which establishes cluster sorting based on reachability to
obtain the 𝐸𝑝𝑠 . However, it needs to pre-determine the appropriate
value of𝑀𝑖𝑛𝑃𝑡𝑠 , and the acquisition of 𝐸𝑝𝑠 needs to interact with
the user. V-DBSCAN [39] and KDDClus [40] plot the curve by using
the sorted distance of any object to its 𝑘-th nearest object, and use
the significant change on the curve as a series of candidate values
for the 𝐸𝑝𝑠 parameter. Similar methods include DSets-DBSCAN
[26], Outlier [2] and RNN-DBSCAN [10], all of which require a fixed
𝑀𝑖𝑛𝑃𝑡𝑠 value or a predetermined the number of nearest neighbors
𝑘 , and the obtained candidate 𝐸𝑝𝑠 parameters may not be unique.
Beside the above work, there are some works [12, 13] that consider
combining DBSCAN with grid clustering to judge the density trend
of raw samples according to the size and shape of each data region
through pre-determined grid partition parameters. Although these
methods reduce the difficulty of parameter selection to a certain
extent, they still require the user to decide at least one parameter
heuristically, making them inflexible in changing data.
Hyperparameter Optimization. For the parameters of DBSCAN,
another feasible parameter decision method is based on the Hyper-
parameter Optimization (HO) algorithm. The classic HO methods
are model-free methods, including grid search [12] that searches
for all possible parameters, and random search [6] etc. Another
approach is Bayesian optimization methods such as BO-TPE [5],
SMAC [28], which optimize search efficiency using prior experi-
ence. In addition, meta-heuristic optimization methods, such as
simulated annealing [32], genetic [36], particle swarm [46] and
differential evolution [45], can solve non-convex, non-continuous
and non-smooth optimization problems by simulating physical, bio-
logical and other processes to search [53]. Based on meta-heuristic
optimization algorithms, some works propose HO methods for DB-
SCAN. BDE-DBSCAN [30] targets an external purity index, selects
𝑀𝑖𝑛𝑃𝑡𝑠 parameters based on a binary differential evolution algo-
rithm, and selects 𝐸𝑝𝑠 parameters using a tournament selection
algorithm. MOGA-DBSCAN [17] proposes the outlier-index as a
new internal index method for the objective function and selects
parameters based on a multi-objective genetic algorithm. Although
HO methods avoid handcrafted heuristic decision parameters, they

Figure 7: Parameter sensitivity.

require an accurate objective function (clustering external/internal
metrics) and cannot cope with the problem of unlabeled data and
the error of internal metrics. While DRL-DBSCAN can not only per-
form DBSCAN clustering state-aware parametric search based on
the objective function, but also retain the learned search experience
and conduct searches without the objective function.
Reinforcement Learning Clustering. Recently, some works that
intersect Reinforcement Learning (RL) and clustering algorithms
have been proposed. For example, MCTS Clustering [9] in parti-
cle physics task builds high-quality hierarchical clusters through
Monte Carlo tree search to reconstruct primitive elementary par-
ticles from observed final-state particles. [24] which targets the
health and medical domain leverages two clustering algorithms,
and RL to cluster users who exhibit similar behaviors. Both of these
works are field-specific RL clustering methods. Compared with
DRL-DBSCAN, the Markov process they constructed is only appli-
cable to fixed tasks, and is not a general clustering method. Besides
the above work, [4] proposes an improved K-Means clustering al-
gorithm that selects the weights of distance metrics in different
dimensions through RL. Although this method effectively improves
the performance of traditional K-Means, it needs to pre-determine
the number of clusters 𝑘 , which has limitations.

6 CONCLUSION
In this paper, we propose an adaptive DBSCAN parameter search
framework based on Deep Reinforcement Learning. In the proposed
DRL-DBSCAN framework, the agents that modulate the parameter
search direction by sensing the clustering environment are used to
interact with the DBSCAN algorithm. A recursive search mecha-
nism is devised to avoid the search performance decline caused by a
large parameter space. The experimental results of the four working
modes demonstrate that the proposed framework not only has high
accuracy, stability and efficiency in searching parameters based on
the objective function, but also maintains an effective performance
when searching parameters without external incentives.
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