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Abstract—Social networks are quickly becoming the primary
medium for discussing what is happening around real-world
events. However, it is still a challenge to detect events on
social media due to its real-time nature, scale and amount of
unstructured data generated. In this paper, we present a novel
real-time system for detecting surrounding real-world events.
Our proposed framework consists of four main components,
including text filtering, text representation, deep clustering, and
event merging. After filtering non-event messages, we use entities
and words to represent messages. Based on text representation,
we propose a novel density clustering algorithm for online event
detection. The resulted sub-events are further merged based
on time information and keyword similarity. Experiments on
standard and real-world datasets demonstrated the effectiveness
of our proposed method.

Index Terms—event detection, cluster analysis, temporal infor-
mation, social media

I. INTRODUCTION

Nowadays, various social media sites, such as Twitter and

Weibo, have become an indispensable part of in personal

daily life. Consumers share their views and broadcast news

and information about ongoing events. These messages posted

can typically reflect these events as they happen. Social

event detection is very important since it provides valuable

insights for us to make timely responses, and therefore has

many applications such as predictive analysis [1–6], crisis

management [7] and public opinion analysis [8, 9]. Thus, how

to effectively and efficiently detect events over social streams

has become a hot spot in academia and industry.

Compared with traditional media (e.g., online news sites,

blogs), social media has unique characteristics that make

event detection particularly challenging [10]. Firstly, the noisy

characteristics of social networks makes relevant events buried

in large amount of noisy data. Secondly, the most social

message is short and often contain abbreviations that are not

in the dictionary, so understanding their semantics is difficult.

In addition, due to the real-time nature of social networks,

the system needs to recognize and track new or unforeseen

events in real time to provide accurate results as quickly as

possible. Moreover, event detection can’t be static, and it needs

to further analysis of the ongoing events from the massive

event clusters generated by online clustering.

While previous work [11–19] has achieved good results in

event detection, these approaches may be susceptible to noise,

which can reduce the quality of social event detection. For

example, tweets not directly related to a specific event may

introduce noise (e.g., many tweets about his career in “Tiger

Woods accident”).

To address these challenges, we propose a real-time event

detection framework, including text filtering, text represen-

tation, deep clustering, and event merging. Specifically, the

text filtering component identifies event-related tweets from

noisy and irrelevant messages. Then, the text representation

component employs entities and words to model texts. After

text representation, the deep clustering component groups

similar tweets within a period in the same event cluster.

Finally, we merge the events in different time slices. Figure 1

provides an overview of our proposed online event detection

framework.

Compared to previously published work on event detection,

the main contributions of this work are summarized as follows:

• We propose a general framework for real-time event de-

tection, including text filtering, text representation, online

clustering, and event merging. It can track event over time

and shows the temporal analysis of sub-events. Moreover,

the framework is flexible and easy to expand, so users can

change the method of a certain module.

• Aiming at the problem that DBSCAN algorithm can’ t

tackle the various densities datasets correctly, we propose

a novel density clustering algorithm, which can automati-

cally detect noisy events and further process these events.

• Experiments on standard dataset shows that the system

has strong anti-interference ability and improves the

efficiency of online event detection.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we first summarize the main notations used

in this paper in Table I. Then we formalize Social Stream,

Social Event and Event Detection as follows.

Definition 2.1: A social stream M = {m0, ...,mi, ...} is a

sequence of messages arriving continuously, mi is associated

with a pair (mi, ti) , where mi is user generated text segments

and ti is the publishing time in non-descending order.
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Fig. 1. Event detection framework for social stream

TABLE I
GLOSSARY OF NOTATIONS.

Notation Description
M ;m Social stream;Social message
ci;C Cluster i;Set of clusters
ei;E Event i; Set of events

R(e);R(w) The representation of entities;The representation of words
D Euclidean distance

NEps(p) The Eps-neighborhood of a point p
Δ The threshold of event merging
ζ The threshold of event linking

Definition 2.2: An event is a significant thing occurring at

a specific place and time and involves people interacting with

other people or objects [20].

An event is usually composed of a set of messages reporting

on it. We consider an event E = {m0, ...,mi} as a sequence of

correlated social messages. For example, social media’s tweet

about “Texas freeze” is an influential event in the real world.

It consists of sequential news describing different aspects of

the event such as snowstorms, power outages, rescue efforts,

and so on. Note that we assume each social message belongs

to at most one event.

Definition 2.3: Given a social stream M , the task of

event detection is to discover social messages reporting on

the same event and divide them into event-centric clusters

{c1, c2, ..., ci, ...}.
III. MODEL

In this section, we describe the framework of our proposed

online event detection method to automatically group tweets

according to the events they report on.

A. Text Filtering

With the rapid development of the Mobile Internet, social

networks have gradually become an indispensable part of

people’s lives. In addition to sharing their opinions about the

ongoing events on social media, users also post tweets such

as personal updates. These noisy data bring great difficulties

to event detection, so it is necessary to separate event-related

text and irrelevant text.

According to Definition 2.2, events are representable by

a group of entities (e.g., person, organization, location and

other). For example, the 92nd Academy Awards show can

be represented by the nominated actors, actresses, and films

that are being discussed. Hence, we can employ entities to

filter irrelevant messages. In addition, tweets with many URL

links or user mentions lack enough information, which can be

filtered out. Table II shows a strict filtering paradigm, which

is defined to remove the meaningless tweets.

Firstly, we employ the regular expression to match user

mentions, hashtags or URL links, and we discard tweets which

meet the filtering paradigm a. Then, we use Stanza [21]

for named entity recognition to filter out messages without

organization, person, or location. After that, we segment the

text and remove stop words, and filter out the text with the

number of words less than 6.

B. Text Representation

Unlike long texts, one piece of short text only contains

few sentences or even just a few words. Sparseness and

brevity are two inherent characteristics of such short texts. Our

solution to this problem is to create two vector representations

R(e), R(w) for each tweet. The R(e) consists of the named

entities(person, organization and location) and hashtags in

tweets, the R(w) consists of all terms in the tweets (with

stop words removed).

It is common for many named entities in tweets to represent

the same real-world entity. For example, “Donald Trump”,

“Donald John Trump” and “#Trump” all refer to the 45th

President of the United States. For interested events, we build
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TABLE II
PARADIGM IN THE TEXT FILTERING

Filtering Paradigm Examples
a.The number of hashtag words, mentioned users or url is greater than 3. @mranti @bitinn @MJTVHoPin https://t.co/Jwn2tXmyzF.

b.The number of named entities(person,organization, location) is less than 1. First and foremost is #BustTheFilibuster.It’s time to go.
c.The number of text segmentation is less than 6. Go Jack! You are awesome.

a database to store the relationship between entities. Then

we replace the entities pointing to the same thing with the

same terms (e.g., “Academy Awards” is replaced by “Oscars”).

Finally, we take an entity as a whole word and learn the

embedding using TF-IDF.

After vectorizing the incoming tweets within the same

period, we calculate the Euclidean distance matrix between

their entities D(e) and the Euclidean distance matrix between

words D(w) respectively. Then the two matrices are unified

into one matrix according to Eq.(1) . Here α is the weight

coefficient, and the general value is greater than 1.

D = α ∗D(e) +D(w) (1)

C. Deep Clustering

Aiming at the problem that DBSCAN algorithm [22] can’ t

tackle the various density datasets correctly, we propose a deep

clustering method, which can automatically detect noisy events

and further process these events. For incoming tweets, we

employ deep clustering to detect events as shown in Algorithm

1.

After employing DBSCAN, in order to measure the internal

noise of an event cluster, we define the representative point

here. If there are the most unvisited core points in an Eps-

neighborhood of a core point p, p is the representative point,

and p and the core points in its Eps-neighborhood are marked

as visited. In a cluster, the more representative points, the

noisier the cluster.

D. Event Merging

After an event happens, a large number of relevant tweets

usually come out in a long time. However, due to the real-time

nature of social networks, our clustering method detects events

in different time slice, and these individual sub-events can’t

effectively describe the event itself. Therefore, it is necessary

to merge clusters that are sub-events of an event after deep

clustering.

Specifically, each cluster ci has a set of additional informa-

tion < IDi, Ti,Keyi, Li >. The IDi is the unique identifier

of ci. The Ti is the temporal information of ci and we use

the earliest published time of the tweet in ci. We use the

textrank algorithm [23] to extract keywords from ci as Keyi.
The Li is the ID of the cluster linked to ci and we initialize

it to the IDi. After getting the additional information, we

incrementally merge each time-slice sub-events according to

the given rules.

Given a new cluster cnew after deep clustering, we first

use keywords to query clusters on the same day from the

database, and get clusters {c1, c2, ...} that contain at least

Algorithm 1: Deep Clustering
Input: M = {m0,m1,m2, ...}: Social stream,

ε:Radius, minPts:Density threshold,

δ:Representative point threshold.

Output: Event clusters: {c0, c1, c2, ...}.
1 Initialize Results = {}
2 Initialize NoisyCluster = [1]
3 while NoisyCluster �= ∅ do
4 if NoisyCluster[0] �= 1 then
5 M = NoisyCluster[0]

6 for m0,m1,m2, ... do
7 calculate the vector representation R(e) and

R(w)

8 calculate the distance matrix D
9 {c0, c1, c2, ...} = DBSCAN(D, ε,minPts)

10 K = len({c0, c1, c2, ...})
11 Initialize Counter = []
12 for i = 0, 1, ...K − 1 do
13 Initialize the unvisited core point set of ci: Γ
14 Initialize the representative point set: Ω = ∅
15 while Γ �= ∅ do
16 calculate |NEps(q)|, ∀p ∈ NEps(q), p ∈ Γ
17 select point q, q = max(|NEps(qj)|)
18 Ω.add(q)
19 Γ.remove(NEps(q))

20 Couter.append(|Ω|)
21 for i = 0, 1, ...K − 1 do
22 if Counter[i] ≥ δ then
23 NoisyCluster.append(ci)
24 else
25 Results.add(ci)

26 del NoisyCluster[0]

27 return Results

one same keyword. Then we calculate the similarity between

cnew and {c1, c2, ...} as Eq.(2). If the similarity between the

most similar cluster cold and cnew is larger than a merging

threshold Δ, we merge the two clusters into cM and update

the additional information < IDM , TM ,KeyM >. The IDM

is IDold and TM is the earlier one between Told and Tnew. To

get KeyM , we use textrank again to extract keywords from

the merged cluster cM . Otherwise, we save the cluster cnew
in the database.
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Fig. 2. Daily tweet number distribution Fig. 3. Daily event number distributiong y

Fig. 4. NMI

g y

Fig. 5. ARI

Sim(ci, cj) =
R(Keyi) ·R(Keyj)

|R(Keyi)| · |R(Keyj)| (2)

In addition, we query the database for clusters that contain

at least one keyword of cnew within a certain time window

(e.g., a week). After calculating the similarity, if the similarity

between the most similar cluster cp and cnew is larger than

a linking threshold ζ, we link cnew with the previous cluster

cp. When cnew is successfully linked, we replace Lnew with

IDp. By linking clusters where appropriate, we form cluster

chains. Finally, a cluster chain is an event, where there are no

events referring to the same event.

IV. EXPERIMENT

In this section, we first introduce the experimental setups,

including the dataset, baselines, and the evaluation metrics.

To evaluate the effectiveness of our proposed event detection

method, we then compare our method with various baselines.

A. Datasets and evaluation metrics

We conduct experiments on a large-scale, publicly available

Twitter dataset [24]. They released relevance judgements con-

taining over 150,000 tweets, covering more than 500 events.

We select 68,200 manually labeled tweets, which related to

401 event classes and spread over a period of four weeks. In

addition, we add 14,600 event- irrelevant tweets to form the

final experimental dataset.

According to the given rules as shown in Table II, 61.1%
of tweets not related to events are filtered, 17.4% of related

tweets are filtered, and the remaining 61996 tweets contain

394 events. The detailed statistics of the datasets are shown

in Fig2 and Fig3.

We use two quality metrics for this evaluation: Normalized

Mutual Information(NMI) [25] and Adjusted Rand Index(ARI)

[26]. NMI measures the amount of information one can extract

from the distribution of the predictions regarding the distribu-

tion of the ground-truth labels. ARI considers all prediction-

label pairs and counts pairs that are assigned in the same or

different clusters, and ARI also accounts for chance.

Specifically, for a set of clusters C = {C1, C2, .., Ci} and

events E = {E1, E2, . . . , Ej}, where each Ci and Ek is a set

of tweets, and n is the total number of tweets.

NMI is defined as follows:

NMI(C,E) =
I(C,E)

(H(E) +H(C))/2
(3)

Where

I(C,E) =
∑

i

∑

j

|ci ∩ ej |
n

log
n ∗ |ci ∩ ej |
|ci| ∗ |ej | (4)

H(C) = −
∑

i

|ci|
n
log

|ci|
n

(5)
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H(E) = −
∑

j

|ej |
n

log
|ej |
n

(6)

ARI is defined as follows:

ARI =
RI − Expected(RI)

max(RI)− Expected(RI)
(7)

Where

RI =
TP + TN

TP + FP + FN + TN
(8)

B. Baselines

• LDA [27]: It is a generative statistical model for text

documents that learns representations for documents as

distributions over word topics, and allows sets of obser-

vations to be explained by unobserved groups that explain

why some parts of the data are similar.

• Word2vec [28]: It uses the average of the pre-trained

Word2vec embeddings of all the words in a message as

its representation.

• EventX [29]: It’s a fine-grained event detection method

based on community detection and is applicable to the

online scenario.

C. Experimental Setting and Implementation

For LDA, we assign each topic is considered as an event

and we set the total number of topics to 40. For Word2vec, we

use the pre-trained 200-d GloVe [30] vectors. For EventX, we

adopt the hyperparameters as suggested in the original paper

[29]. For a fair comparison, after we obtain message repre-

sentations from the other models and the message similarity

matrix except EventX, we leverage DBSCAN clustering.

D. Experimental results

Here, in order to measure the effect of the model in

the streaming environment, we split the dataset by dates to

construct a social stream. Fig4 and Fig5 show the statistics of

the resulting social stream. None of these models incorporate

event merging. Table III summarizes the average social event

detection results in NMI and ARI respectively. We can observe

that the performance of our approach is better than the

baseline methods in terms of NMI and ARI. In addition, the

performance of our proposed model is more stable.

TABLE III
THE EVALUATION RESULTS ON THE DATASET

Methods NMI ARI
LDA .27±.02 .10±.01

Word2vec .41±.01 .15±.02
EventX .55±.01 .08±.01

Deep Clustering .60±.00 .28±.01

We also investigated the influence of the similarity threshold

Δ. Clustering performance of our proposed method with

different values of Δ on the dataset are illustrated in Fig6. As

we can see, NMI and ARI are improved to different degrees

Fig. 6. Performance of our method with different values of Δ

compared with those without event merging when Δ < 0.5.

The NMI increases by two percentage points, and the ARI

increases by two to seven percentage points. Besides, the

number of daily event clusters is effectively reduced, which is

closer to the actual number of events. For example, the number

of events on 2012/10/10 is 28. When Δ = 0.2, the number

of clusters is 60 while the number of clusters is 155 without

event merging.

V. CONCLUSION

In this study, we study the problem of event detection from

the noisy content in social media. To tackle this problem,

we propose a general framework for real-time event detec-

tion. In our method, we propose a novel density clustering

algorithm, which can automatically detect noisy events and

further process these events. Experimental results show that

our proposed deep clustering algorithm achieves significant

improvement over baselines.

In future work, we will leverage heterogeneous information

network framework for modeling short texts to better incor-

porate the rich semantics and structural information contained

in the social data.
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