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Abstract—Event detection on social platforms can help people perceive essential events and make actionable decisions. Existing
document-pivot streaming social event detection methods generally embed documents and perform text clustering. They face the
challenges of constantly changing context and unknown event categories and struggle by designing compound text representation
methods and various similarity measures. However, phased, well-designed methods are excessively fragile and unable to utilize the
potential of text representations fully. Meanwhile, their complex threshold settings result in clustering-based event detection suffering
the pain of ever-changing environments. We propose a text representation learning method namely Text Similarity Contrastive Learning
Neural Network (Text-SimCLNN) to tackle these challenges. Text-SimCLNN uses smaller parts to learn the similarity probability of text
pairs from semantic and structural perspectives, effectively bridging the gap between text representation learning and similarity
measure in streaming event detection. Event discovery and merging in streams can be easily performed based on the learned
representations, and we use various techniques to speed up such processes. Furthermore, we introduce an online update mechanism
that uses heterogeneous graphs to generate high-quality samples to enable stable and reliable inductive learning. Extensive
experiments on two real-world datasets demonstrate that our method far exceeds state-of-the-art (SOTA).

Index Terms—Contrastive learning, graph neural network, streaming event detection, text clustering, text representation, text similarity.
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1 INTRODUCTION

THE rapid growth of the Internet and changing lifestyles
make people more willing to publish and share what

they see and hear on social platforms. Simply observing
posts related to the real world enables event detection
promptly, which further enables users, organizations, and
governments to acquire actionable knowledge involved
with natural disasters, major social events, disease propa-
gation [1], [2], etc.

Research on streaming social event detection, usually
taking texts as the primary research object and linking multi-
ple dimensions of information, explores text representation,
similarity measure, and streaming clustering methods under
time-series data. As the top priority of the task, text rep-
resentation gains extensive research attentions. Many text
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representation methods have been developed to overcome
the lack of dynamic and sparsity brought by classic methods
such as TF-IDF [3], [4], [5], [6]. Most of them improve the
text representation by incrementally updating the word rep-
resentations or designing text representation models to ob-
tain better word vectors. Linguistic features and knowledge
bases have also been introduced to obtain better text repre-
sentations [7]. Some studies construct graphs utilizing texts
and closely related heterogeneous information to portray
events more accurately [8], [9]. However, such structural in-
formation is costly to obtain, as is its limited coverage. Simi-
larity measure and clustering methods are usually extended
based on representation methods and are result-oriented.
For the similarity measure, Lp space distance and cosine
distance are widely used [3], [10], and some studies extend
existing similarity measure methods based on their carefully
designed text representation techniques. Becker et al. [10]
calculate similarities for all their extracted contextual fea-
tures and propose a weighted ensemble method to account
for different measures of similarity during the clustering
process. Peng et al. [8] propose a method for measuring
similarity based on meta-paths called KIES as well as a non-
linear layer to support the learning of text representation.
The proposed model is further used to determine whether
two event instances (short texts) belong to the same cate-
gory. Chen et al. [11] use the gated recurrent unit (GRU)
and the attention mechanism to obtain text representations
for one text pair. They normalize and multiply both text
embeddings to obtain similarity and then optimize those
embeddings by the backpropagation algorithm. Clustering
(also named cluster analysis) is not a specific algorithm.
Corresponding to event detection, it refers to collecting doc-
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uments showing apparent subject uniformity in a cluster.
Clustering methods based on similarity or distance often
need to be optimized over time and space to cope with
streaming event detection [12], [13].

However, when these phased, well-designed methods
[10], [14], [15] work together, they face many difficulties
once the environment changes. We argue that most of the
existing text representation methods in streaming event
detection do not fully exploit the potential for learning text
representation. The vector spaces of the learned text rep-
resentations are not entirely compatible with the similarity
calculation subtask [6], thereby reducing the accuracy of the
similarity measures. Invisible data will also challenge the
learned representations. Furthermore, different methods of
measuring similarity often show distinct distributions on
the same dataset, and the aggregation of them makes the
problem more complicated [10]. The impact of degraded
performance of text representations and similarity measures
will be further superimposed, which will significantly im-
pact clustering outcomes. In addition, the existing methods
rely on the manual setting of thresholds in many places, so
any place with a threshold needs to be carefully adjusted to
adapt for the method.

This study introduces a novel model architecture named
Text Similarity Contrastive Learning Neural Network (Text-
SimCLNN), which directly learns the probability of simi-
larity of text pairs through contrastive learning. With such
a method, streaming event detection is almost an end-to-
end process, and there are almost no thresholds that we
need to adjust dynamically. Text-SimCLNN mainly con-
sists of a deep neural network for encoding and a simple
classification header for similarity calculation. It is worth
noting that the encoding part explicitly utilizes the complete
structural information of texts with the help of graph neural
networks (GNN). Moreover, it treats word pieces rather
than words as basic units and exploits the generalization
capabilities of pre-trained language models [16], [17]. This
easy-to-separate structure allows to speed up similarity
calculation and streaming clustering processes by various
technical means. Specifically, we define the central points
of an event and propose a method utilizing the central
limit theorem (CLT) to sample them. We also introduce
dynamic programming and pruning techniques to expedite
the calculation and comparison process when dealing with
streams. By the ways introduced above, there is no need to
set a threshold for calculating the similarity of text pairs
learned, and pairs with similarities above 0.5 are similar
pairs. The same happens when we conduct ranking-based
categorization in order to generate and merge events. In
addition, to ensure the system’s reliability and stability in
streaming scenarios, we propose an update mechanism that
obtains high-quality text pairs from new data fragments by
constructing heterogeneous graphs and performing random
walking. Fine-tuning utilizing these samples ensures that
the system can behave to our expectations. We conduct
extensive experiments and achieve a new state-of-the-art
(SOTA) on two real-world data sets: the Twitter Event-2012
dataset and the TREC 2015 Microblog Track dataset.

In short, our contributions can be summarized as the
following.
1) We propose a novel model architecture named Text-

SimCLNN, which directly learns the probability of simi-
larity of text pairs through contrastive learning. This end-
to-end approach simplifies streaming event detection
while making it more accurate in a constantly changing
environment. Zero-shot induction can be performed by
our method.

2) We apply various technologies to the single-pass al-
gorithm to reduce the time and space complexity of
our scenario. These technologies include defining the
event’s central points and sampling with CLT, dynamic
programming, and pruning. Such improvements allow
us to generate and merge events in streaming scenarios
quickly.

3) An update mechanism is introduced to support reli-
able lifelong incremental inductive learning. Experiments
with multiple time steps verify the stability of this mech-
anism.

4) We conduct extensive experiments while the results show
that our method far exceeds SOTA. Meantime, we find
that existing datasets are not labeled completely accu-
rately, which results from the ambiguity of event defi-
nition. We hope that this will provide some insights for
future related research.
The rest of this paper is organized as follows. Section 2

briefly introduces related works. Section 3 introduces some
basic concepts related to our study. Section 4 elaborates on
the proposed method. Section 5 presents and discusses the
experimental results. We conclude this article in Section 6.

2 RELATED WORKS

In this section, we will briefly introduce the present situation
and progress of event detection. We will also introduce text
representation, similarity measure, and clustering methods
related to social event detection.

2.1 Event Detection

Event detection has long been addressed in the Topic De-
tection and Tracking (TDT) program and is divided into
two categories: retrospective event detection (RED) and new
event detection (NED) [18]. Event detection methods can
be classified into the specified and the unspecified [19],
depending on the accessibility of prior knowledge of events.
The related tasks are usually named as specified event detec-
tion (SED) and unspecified event detection (UED). Besides,
according to different research emphasis, event detection
techniques can be divided into the document-pivot, and the
feature-pivot [19], [20]. Document-pivot techniques repre-
sent documents as vectors and classify or cluster them based
on the representations, while feature-pivot techniques detect
topic trends or areas in data streams. In this article, we focus
on UED tasks and develop document-pivot techniques.

Distinct methods have been proposed to perform event
detection. Clustering is the most popular technique in event
detection systems [21]. Specifically, classical methods such
as topic models, hierarchical clustering, and density-based
clustering account for offline event detection; incremental
clustering methods (e.g., single-pass and batch clustering)
handle the streaming situation; another kind of method
named graph partitioning, which takes advantage of graphs
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and graph algorithms, is also widely researched [22]. Di-
mension reduction techniques are also used in most cases to
reduce calculation time and space cost.

2.2 Text Representation Learning
Social event detection research has been involved in many
perspectives, including text features, temporal features, spa-
tial characteristics, social network structures, etc [20], [22],
[23], [24], [25]. Among these elements, text features usu-
ally perform the primary role during event detection, and
therefore developing text representation methods attracts
the attention of many researchers. Early event detection
approaches use some variants of TF-IDF to represent doc-
uments and then adopt clustering methods based on docu-
ment similarity with time distance penalization [26]. Brants
et al. [3] further improve this kind of method, propos-
ing an incremental TF-IDF model to acquire dynamic text
representations. This approach enables models to change
with environments. Hu et al. [4] aim to ease the impact
of the curse of dimensionality and feature independence
assumption by splitting the document representation gener-
ation procedure into two steps. The method first clustering
word vectors learned by Word2Vec into a latent semantic
space. After that, documents are represented as a distribu-
tion across these latent topic clusters. Single-pass clustering
is conducted with such representations. Dhiman et al. [6]
propose JoSE, a spherical vector representation method. It
leverages the co-occurrence information among words and
paragraphs in a spherical generative model. Experiments
show better word similarity and text clustering results in the
final steps compared to Word2Vec and Doc2Vec. Recently,
deep learning models have been widely used to learn text
representations, including convolutional neural networks
(CNN) and recurrent neural networks (RNN). Feng et al.
[5] use Bi-LSTM and two CNNs with convolution kernel
sizes of 2 and 3 to obtain word representations. Their
downstream tasks are slightly different from ours, namely,
trigger identification and trigger classification, and they will
be further introduced in section 3. However, these model
architectures can hardly capture non-consecutive and long-
distance semantics [27].

Pre-trained language models such as ELMo [28] and
BERT [17], have shown powerful generalization abilities
and reached SOTA on multiple natural language process-
ing (NLP) tasks. Shi et al. [29] propose a sentence-level
feature-based event detection model to detect 14 types of
meteorological events in the social network while the model
consists of a fine-tuned BERT and a wide-grained capsule
network. This method is essentially still a classification
model working on specified event detection.

However, an essential factor determining the success
or failure of streaming event detection is whether text
representations are learned properly to handle uncertain
categories, especially similarity calculation. Pre-trained lan-
guage models are trained with specified pre-training tasks.
Thus they are not suitable to be directly used under unsu-
pervised scenarios.

2.3 Similarity Measure
Most clustering algorithms rely on distance or similar-
ity measures. The classic similarity measure methods are

widely used in social event detection, such as cosine
distance, Hellinger distance, Kullback-Leibler divergence,
Jensen-Shannon distance, and Clarity-based distance [3],
[30]. Becker et al. [10] represent texts as a combination of
various features (e.g., titles, descriptions, tags) and propose
a learnable ensemble-based model to obtain text similari-
ties with these features. Precisely, for one kind of feature,
cosine similarity is calculated with the corresponding TF-
IDF vectors. Fedoryszak et al. [14] design an entity simi-
larity measure method. It selectively links entities based on
frequencies and co-occurrences, thereby constructing entity
graphs for graph-based clustering. Peng et al. [8] build an
event-based heterogeneous information network and design
a meta-path-based event similarity measure method called
KIES. They further construct the adjacency matrix of event
instances utilizing KIES. Corresponding event instance rep-
resentations are obtained utilizing GCN. They addition-
ally design a non-linear classification module to determine
whether event instances belong to the same category. Liu et
al. [31] define an event as an 8-tuple and design a variety of
similarity measures to support investigating multi-lingual
event detection and evolution.

2.4 Streaming Clustering
Due to the enormous amount of data in social streams
and lack of prior knowledge of event categories, classical
clustering methods such as K-means cannot work well in
such situations. Many researchers use incremental cluster-
ing methods or perform batch clustering [4], [9], [32]. Single-
pass incremental clustering is widely used because of its
simpleness. In addition to designing proper similarity mea-
sures, quickness and effectiveness compared with existing
categories is also the key to applying such a method. Becker
et al. [10] define the centroid of a cluster as the average of its
feature representations to speed up the comparison process.
Zhang et al. [33] propose a cluster centroid update strategy.
For a specific cluster, if the average similarity of the new text
with all points is larger than the similarity between the new
text and the old centroid, a new centroid will be formed by
recalculating; otherwise, the centroid remains unchanged.
Moreover, as for batch clustering, multiple processes of
merging events are inevitable, which is not easy [34].

There are some other clustering methods based on graph
partitioning. Zhao et al. [2] construct a hypergraph structure
with the heterogeneous data in microblogs, and highly re-
lated ones are partitioned into subgraphs named microblog
cliques (MCs). A bipartite graph is constructed, and then
they perform a transfer cut partition to detect events. Exist-
ing MCs are used to guide new event detection. Sayyadi et
al. [35] consider that events and stories can be characterized
by a set of descriptive, collocated keywords. Thus they
construct graphs utilizing keywords and entities and use
graph algorithms such as graph partitioning and commu-
nity detection to gain critical documents. Documents, which
are similar to the critical documents in the original corpus,
form a cluster.

3 PRELIMINARIES

In the following subsections, we will introduce the highly
related concepts with this study, including what can be
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TABLE 1
The descriptions of primary notations.

Notation Description

C event category space
D document instance space
W word space
C event category set
D document time series
O observed data points conforming to f

G = (V, E) text graph
V the node set of G
E the edge set of G
X ∈ RN×1 the node feature matrix of V
A ∈ RN×N the adjacency matrix of G
N (i) the entry neighbors of node vi ∈ V
S ∈ RN the word piece sequence
S ∈ RN×1 the word piece feature matrix of S

H
(l)
st ∈ RD×D the l-th layer hidden states of the structural

encoder
H

(l)
se ∈ RD′×D′

the l-th layer hidden states of the semantic
encoder

Ese ∈ RD the output matrix of the semantic encoder
Est ∈ RD′

the output matrix of the structural encoder

N the size of V
D the dimension of the embedding layer in the

structural encoder, equal to Dst

D′ the dimension of the embedding layer in the
semantic encoder, equal to D

′
se

Dst the dimension of hidden states in the struc-
tural encoder

D
′
se the dimension of hidden states in the se-

mantic encoder

called an event and the definition of the problem being
studied.

3.1 Definition of an Event

The research so far has not yet made exact judgments on
how events are defined [19], [36]. Stanford Encyclopedia of
Philosophy says philosophers who agree with a conception
of events as particulars distinguish events as four sorts:
1) activities; 2) accomplishments; 3) achievements; and 4)
states1. According to different theories, this taxonomy may
contain some variants. Some scholars argue that different
verbs describe different types of events based on Aristo-
tle’s theory. In recent years the method of dividing event
detection into two subtasks which are trigger identification
(TI) and trigger classification (TC) [37] coincides with such
philosophical ideas. In data mining, computer science, re-
searchers have concretized the concept of an event into a
feasible definition. McMinn et al. [38] define that an event
as “something significant that happens at a specific time and
place.” Focusing on Twitter, Weng and Lee [20] describe an
event as “a set of posts sharing the same topic and words
within a short time.” Becker et al. [39] give a more formal
definition, “an event is a real-world occurrence e with a
period Te and a stream of Twitter messages discussing the
event during the period Te.” Though differences existing
more or less among the above definitions, we define an
event within the scope of our research as:

1. https://plato.stanford.edu/entries/events/ (last accessed: March
25, 2021)

Definition 1. An event is a collection of documents that
refer to the same real-world activities, accomplishments,
achievements, and states. There should be at least one
difference in participants, places, time, etc., in two dif-
ferent events.

With the definition of an event, we further define what an
event mention is:
Definition 2. An event mention is a document of an event

that at least contains one aspect of the event and can be
distinguished from mentions of other events.

Here we give an example to explain these two concepts. For
example, the posts related to “the COVID-19 virus” could be
called as an event, while each post might talk about different
perspectives about “COVID-19” and can be referred to as
an event mention. However, in another fine-grained situa-
tion, “WHO marks six-month anniversary of the COVID-19
outbreak” and “WHO experts to travel to China” could be
described as two different events2. Such definitions allow for
overlap between events and even conceptual upper-lower
relations as long as they can be distinguished. In fact, such
phenomenon is widely present in daily life and research
data sets.

In addition, these two definitions ensure a certain degree
of distinction between documents of different events for our
research. At the same time, it is also the premise of the text
representation learning method we proposed.

3.2 Problem Definition
Important notations in this article have been summarized
in Table 1 while matrices and vectors are in uppercase
and lowercase and both in bold. Formally, given a series
D = {d0, d1, ..., di, ..., dn|di ∈ D} and a partly known or
unknown event category set C = {c|c ∈ C}, the problem
(unspecified event detection, UED) is to establish a mapping
f : D −→ C. Specifically, d = {w0, w1, ..., wn|w ∈ W, n ∈ N}
and some sample points conforming to the mapping f can
be observed as O = {c = f(d)|d ∈ D, c ∈ C}, note that O
can be an empty set. We estimate or learn the mapping f
without or with parameters.

4 METHODOLOGY

In this section, we elaborate on our proposed method,
including the architecture of Text-SimCLNN, the offline
training procedure based on contrastive learning, a quick
online inference method, and an update mechanism for
stably inductive learning.

Firstly, we introduce the contrastive learning frame-
work for text categorization and how we adapt it to UED
tasks. After that, divided into details, we introduce a sim-
ple method that constructs samples for semi-supervised
contrastive learning to enable offline training. Secondly,
we elaborate on the proposed text similarity contrastive
learning neural network, the related loss function, and its
training procedure. For the inference stage, we introduce a
quick inference method based on single-pass clustering with
knowledge regularization. Finally, we introduce an update

2. https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/events-as-they-happen
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[SEP]
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Fig. 1. The workflow of Text-SimCLNN. (a) illustrates messages in the data stream and their dependency syntax trees contained therein, and the
word that plays a significant role in categorization is in large size. (b) shows the model architecture of Text-SimCLNN as well as its training process.
(c) shows the inferring process of event merging and generating. The centroid for one event is sampled from all the documents within that event
cluster, while the sampling strategy is based on the central limit theorem (CLT).

mechanism to correct the system in streaming scenarios.
With the above steps, event detection can perform in a
closed-loop; thus, the system falls into a stable and reliable
inductive learning paradigm. Fig. 1 illustrates the workflow
of Text-SimCLNN in streaming social event detection.

4.1 Contrastive Learning Framework

The essence of deep learning is to do two things: repre-
sentation learning and inductive bias learning. As a re-
cently widely concerned representation learning method,
contrastive learning has proven its effectiveness in the field
of computer vision [40], [41]. For an n-class classification
problem, contrastive learning does not directly learn the
inductive preferences. It tries to capture the features that
can distinguish samples coming from different categories.
We adapt contrastive learning to the UED task, and the
motivations will be described as follows. The goal of a UED
task is to detect which event a social post should belong
to in a streaming scenario while the total number of event
categories is unknown. The n-class classification techniques
are not up to this task. Thus an easy-to-throwing practice
is to use unsupervised learning methods such as clustering
to tackle this problem. The performance of most existing
clustering methods highly depends on the quality of the
learned text representations. Under this premise, the text
representation learning methods face the following two core
challenges.
1) The methods must be able to represent out of vocabulary

(OOV) words; or ignore them, which obviously loses
semantics.

2) The learned text representations should have a strong
generalization ability.

The first challenge is unique to natural language processing,
compared to computer vision. The representation space of
pixels is fixed, namely most commonly fixed to several
dimensions, such as channels and RGB values. However, the
word space of natural language is unfixed due to the vari-
ability of words, although most languages consist of limited
graphemes and phonemes. WordPiece [16] is proposed and
successfully applied on BERT [17], showing its effectiveness
against this challenge which is also called the OOV problem.
The second challenge has been studied for a long time, and
typically several approaches have been proposed, such as

transfer learning, pre-training and fine-tuning, as well as
contrastive learning.

In the introduced contrastive learning framework, we
regard the text categorization as multiple binary classifica-
tions. Thus we can treat any text categorization problem as
a text-pair contrastive learning problem that enables texts to
be embedded into a unified representation space and allows
categories to change. Positive and negative samples shall be
constructed in a relatively balanced manner to gain decent
performance, according to Paulina et al. [42]. Text prepro-
cessing within contrastive learning shall be applied with
WordPiece or similar approaches. The representation learn-
ing model must be effective enough to handle the second
challenge. Under such a framework, different-category texts
can be distinguished from each other, and the categories of
new texts are predictable.

4.2 Text-pair Construction Strategy
Although contrastive learning can work in a self-supervised
manner, namely using the potential characteristics to gener-
ate training data such as next sentence prediction (NSP),
sentence order prediction (SOP), and masked language
model (MLM), we prefer to use stronger supervision signals.

As we train our models on a fixed WordPiece vocabulary,
more specifically its size is 30522, the training data should
cover the vocabulary as much as possible. We intercept a
large enough fragment from the stream and artificially label
it as follows:
1) For negative sample pairs, we randomly select a sample

pair without replacement from the fragment and judge
whether it is a negative pair. We drop it if it is a positive
one. When the fragment runs out, a new fragment is
intercepted. This process goes back and forth until the
number reaches our expectations.

2) For negative samples, the selecting procedure is similar.

4.3 Text Similarity Contrastive Learning Neural Net-
work
This subsection will introduce our proposed method in
detail. Firstly, we will introduce the preprocessing proce-
dure, including constructing a text to a graph and other
regular means. The Text-SimCLNN model architecture will
be described in 4.3.2. The content related to training will be
introduced in 4.3.3.
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Fig. 2. Construction of a text graph. A dependency parsing tree is used
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4.3.1 Preprocessing

As for short social texts, we do not deal with them by
conventional means like removing stop words, stemming,
etc. The reason is that short texts inherently contain limited
information. In the experiments, we mainly use Twitter data
and remove the Twitter links and extra space separators.
After that, each text is encoded into two forms: sequence
encoding [17] for semantic modeling and graph encoding
for structural modeling. The graph encoding procedure
is: One text is first parsed using a syntactic parsing tree
and then constructed into a directional graph. Tree nodes
become vertexes or subgraphs depending on whether the
words of nodes can be divided into smaller pieces. The
subgraph is generated by firstly generating a “Compound”
node and then stringing it with word pieces. As for edges,
each vertex points to the vertex, which is its son in the
parsing tree. Fig. 2 illustrates this construction method with
an example.

4.3.2 Model Architecture

Most competitive text classification methods do not ex-
plicitly model the whole text structure [43]. Transformer-
based models show powerful feature capturing capabilities,
and through large-scale pre-training and fine-tuning on
target tasks, they have reached or even surpassed SOTA on
multiple benchmarks [17], [44]. Recently an exciting work
[45] conducted a series of experiments to investigate the
ability of BERT in capturing structural information. Their
experimental results suggest that the intermediate layers
of BERT encode a rich hierarchy of linguistic information.
Such linguistic information includes surface features at
the bottom, semantic features at the top, and even some
syntactic features in the middle (corresponding evaluation
tasks including sensitivity to word order, the depth of the
syntactic tree, and the sequence of top-level constituents
in the syntax tree). However, the subject-verb agreement
evaluation shows that the captured structural information is
limited, and deeper layers are needed to solve long-distance
dependency problems.

In our method, we use GNN to model the complete
structural information within one text explicitly. We further
combine it with the features captured by the transformer-
based encoder to obtain better generalization capabilities.

Given one text t, it is encoded into a word piece sequence
S = {t0, t1, ..., ti, ..., tn} and a text graph G = (V, E),V =
{v0, v1, ..., vi, ..., vN}, where vj = ti or “Compound”, j =
0, 1, 2, ..., N,N ≥ n.

Semantic encoder. It mainly accounts for capturing se-
mantic features for texts. The encoder is composed of an
embedding layer, a 12-layer transformer decoder [17] and a
pooling layer. We compute the output as follows:

H(0)
se = Dropout(LayerNorm(Embedding(S))), (1)

H(l)
se = TransformerDecoder(H(l−1)

se ), (2)

ese = AveragePooling(H(12)
se ), (3)

where l = 1, 2, ..., 12.
Structural encoder. Transformer-based models cannot fully
capture the structural features of texts, and more specifically,
they cannot transmit long-distance dependencies losslessly.
The encoder is mainly designed to alleviate this problem. It
is composed of an embedding layer, a graph neural network
and a pooling layer. We compute the output as follows:

H
(0)
st = Embedding(X), (4)

H
(1)
st = Linear(H

(0)
st ), (5)

H
(l)
sti

= GNN(H
(l−1)
stN(i)

,A)

= Wl1H
(l)
sti

+ Wl2 ·meanj∈N (i)H
(l)
stj
, (6)

H
(l)
st ←H

(l)
sti
,∀vi ∈ V, (7)

est = Pooling(H
(2)
st ). (8)

The embedding layer weights in 4 are initialized from
the embedding layer of pre-trained BERT. The reason why
we do not perform dropout [46] and layer normalization
[47] in 4 is that structural information is an important part
of short texts. We argue that it is not suitable for dropout
while shallow neural networks hardly benefit from layer
normalization. Equation 6 is the update process of node
vi in lth layer and N (i) are the entry neighbors of vi. In
the experiments, we find that one GNN layer is enough,
and deeper GNN does not get better results, thus l = 2.
Considering the characteristics of UED tasks, we implement
theGNN layer in 6 with an inductive graph neural network
[48]. As for the pooling function in 8, we employ differ-
ent pooling strategies, including max pooling, averaging.
To selectively leveraging structural encoding, we further
employ an attention-based pooling method. This method is
formalized as follows:

est = MultiHeadAttention(ese,H
(l)
st ,H

(l)
st ), (9)

where MultiHeadAttention is introduced by [49]. In the
experiments, we find that MultiHeadAttention sometimes
performs best while the average pooling achieves optimal
or sub-optimal performance all the time.

The final text representation of one text is the combina-
tion of semantic and structural embeddings:

e = Concatenate(ese, est). (10)

Classification header. As mentioned in 4.1, text pairs are
encoded and then classified as positive or negative, and we
further convert such similarity degree into similarity prob-
ability. The similarity probability of two text embeddings
e1, e2 is calculated as follows:

output = Softmax(S(e1, e2)), (11)
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where S is a mapping function with parameter θ that
expresses the similarity of one text pair:

S = f(e1, e2; θ). (12)

We will further introduce 12 in detail in 4.3.3.

4.3.3 Loss Function and Training Process
Based on our text-pair construction method, the positive and
negative samples are relatively balanced. We hope that the
model can discern whether the two samples belong to the
same category to the greatest extent; therefore, we directly
optimize category probabilities. For each text in one pair, its
final embedding is represented by concatenating its seman-
tic and structural embedding, equivalent to superimposing
two signals. The similarity between them is calculated as:

s = Linear(e1 · e2), (13)
ŷ = softmax(label = positive|s), (14)

where · is an element-wise dot product operation. We em-
ploy the element-wise dot product instead of cosine because
cosine measurement loses the module length information.
The linear layer enables better feature selection, while more
complex non-linear structures will fit the task and thus
disperse the embedding effect.

We use cross-entropy for optimization. With the above
formulations, the loss function on the training dataset forms
as follows:

L =
n∑

i=1

−(y · log ŷ + (1− y) · log(1− ŷ)), (15)

where n is the number of text pairs constructed from the
training dataset. To speed up the training process, we pack
text graphs and text sequences to enable batch training. Par-
allelization over a graph mini-batch is achieved by creating
sparse block diagonal adjacency matrices and concatenating
feature and target matrices in the node dimension3. This
composition allows a differing number of nodes and edges
over examples in one batch. To achieve joint learning of
the two encoders, we use AdamW [50] for training and
set the optimized step size to the smaller one [17], namely
1.0× 10−5.

4.4 Quick Inference with Knowledge Regularization
In the inference stage, we employ the single-pass clustering
algorithm to detect events. Such an algorithm can perform
streaming clustering by calculating the similarities between
the current document and all existing clusters. With our
representation method, the similarity between text points
is determined by 14, namely ŷ. Unlike the classic clus-
tering algorithms, it is not necessary to carefully adjust
the thresholds (such as the maximum reachable distance
and minimum points in DBSCAN [51]), which determine
whether two points belong to the same cluster. The reason
is that 14 represents the probability that two samples belong
to the same category. Thus, an obvious choice is to set the
threshold to 0.5. Accordingly, the core task is how to quickly

3. Implementation referenced in https://pytorch-
geometric.readthedocs.io/en/latest/notes/introduction.html#mini-
batches

and effectively generate and merge clusters (events). We
start from two aspects: representing events as core point
sets and introducing the ranking technique for the single-
pass clustering.
Event core points. Clustering algorithms are usually of
high complexity. We represent a cluster as a small set of
core points sampled from the cluster. We perform clustering
with the single-pass clustering technique: Each document
compares with the existing cluster core points; a new cluster
will be formed if it is not similar to all existing clusters.

Assuming that the semantics of events and event mentions
are measurable, and the semantic of an event is the average
of all corresponding event mentions, core points are defined
as follows: The core points are a set of points sampled from
one event cluster, and their average semantic should be
equal to the semantic of the corresponding event on the
premise that they obey the distribution of event mentions.
We then offer a sampling strategy to form this core point
set. The sampling strategy first performs n sampling with
replacement while each sample size is k (k ≥ 30), then
randomly choosing one sample from k1, k2, ..., kn as the core
point set. With such a method, the sample set is basically in
line with the original data distribution according to CLT,
and the event core points will not produce semantic drift in
the statistical sense.

We will give a simple explanation of how this is
achieved. Assume there is an event withm documents. Each
of them owns a certain semantic value v where v ∈ R,
and we have reason to believe that v obeys a certain
distribution (may wish to set the mean as µ). The mean
of the distribution can represent the semantic of the event
cluster. According to CLT, the distribution of the mean µk

of the sampled set m1,m2, ...,mk, k ≥ 30 is approximately
normally distributed and µ̄k = µ. Thus the semantic of the
event cluster can be represented by the mean of samples
that are randomly sampled from the distribution of µk.

In our experiments, n is set to 100, and k is set to 30.
It is worth noting that this sampling strategy enables the
computational cost to increase linearly with the number of
categories. And for (Dst + D

′

se)-dimensional space, where
Dst = D

′

se = 768 in our experiments, it can easily support
the distinction of thousands of event categories.
Ranking-based categorization. One document d can be
similar with multiple event core point sets and may
wish to set as s1 = {d11, d12, d13, d14, d15}, s2 =
{d21, d22, d23, d24, d25}, s3 = {d31, d32, d33, d34, d35}. The
similarities between d and s1, s2, s3 involve with all
the documents d11, d12, ..., d35 thus the embeddings of
d11, d12, ..., d35 can be precomputed with 10. Five similarity
scores q1, q2, q3, q4, q5 can be calculated for d and documents
within each set utilizing 13 and 14, and the final similarity
score between d and each set is the average of them, i.e.,
qfinal = 1

5

∑5
i=1 qi. With such a method a ranking-based

categorization process can be easily performed. When the
average similarity score between d and the core point set is
less than 0.5, we regard them as the density-unreachable (the
concept is borrowed from DBSCAN), and a new cluster will
be formed with d. It is worth noting that once a document
is classified into a cluster, the corresponding core points
will be resampled with a small probability. This infrequent
updating process for core points ensures the dynamic char-
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Algorithm 1: Text-SimCLNN Based Single Pass
Text Clustering

Input: Known event clusters Cknown, cluster labels
Lknown and corresponding embedding
matrix Eknown; a streaming fragement
including n documents F = {d0, d1, ..., dn},
precomputed document embeddings
E = {ed1 , ed2 , ...,edn}.

Output: Document labels Lnew = {l1, l2, ..., ln},
detected event clusters Cknown.

1 D = descSortByLength(F );
2 for di in D do
3 edi ← search(E, di);
4 Wsim ← Sim(edi ,Eknown) by Eq. (14);
5 Wsim[: k]← ranking (Sec. 4.4);
6 Wsim[: k′]← pruning (Sec. 4.4);
7 qmost = max(sum(Wsim[: k′])) (Sec. 4.4);
8 if qmost < 0.5 then
9 Cknown ← cnew ;

10 li ← lnew;
11 Lnew ← add(Lnew, li) ;
12 Eknown ← stack(Eknown, edi);
13 else
14 cmost ← qmost ;
15 li ← lmost ;
16 Lnew ← add(Lnew, li);
17 cmost ← add(cmost, di) ;
18 Cknown ← update(Cknown, cmost) ;
19 if random() < ε (Sec. 4.4) then
20 dcores ← resampling cmost;
21 Ecores ← search(E, dcores);
22 Eknown ← update(Eknown,Ecores);
23 else
24 do nothing;

acteristic of event clusters as well as calculations at a high
speed.

We further accelerate this process with the idea of prun-
ing. Assuming q21+q22+3.0 < q11+q12+q13+q14+q15, s2
will no longer need to participate in comparison calculations
and the computational cost is reduced. Similarly, we can
also prune the calculation process further according to the
distribution of the data, e.g., when the qfinal would not be
unlikely to exceed 0.95, discard the current compared event
category.

In Text-SimCLNN, the time consumption of text encod-
ing is high. Thus by implementing the clustering algorithm
with the dynamic programming technique, each text will
be calculated only once during inference. Considering that
not all events in the newly arrived stream are unseen, we
pre-calculate the embeddings of already known clusters to
detect them quickly. We call this inference process with prior
knowledge as knowledge regularization, and it is referred to
as KR in the rest of this article. The whole clustering process
is shown in Algorithm 1.

4.5 Update Mechanism
Inductive learning in streaming scenarios without feedback
and correction will result in unstable and unreliable system

Document Keyword

(a) Sampling with Graph (b) Sampling without Graph

Positive

Negative Positive
Negative

(c) Training with Existing (d) Training without Existing

Embedding(new/existing)

Fig. 3. Advantages of the proposed update mechanism. Samples gained
with the graph are more indistinguishable and learning from them is
more efficient. Adding existing event core points can avoid overlapping
in learned vector spaces.

performance. An example shows such a phenomenon:

Example 1. P1 (C8): Crazy political junkie here, listening to
the debates.#Debate2012
C1 Description: 12 Oct 2012 – Paul Ryan spoke for 40 of
the 90 minutes during Thursday night’s vice presidential
debate and managed to tell at least 24 myths during that
time.
C8 Description: During US presidential debate, Presi-
dent Barack Obama tells candidate Mitt Romney he is
the last person to get tough on China.

Within this example, the document is predicted as P1 which
refers to the ground truth C1, while it belongs to a new
category C8. Too fine event granularity definition and event
evolution will cause much overlap between documents,
resulting in such a phenomenon.

We propose an update mechanism, i.e., regular fine-
tuning, to overcome this problem. When the system exhibits
performance degradation or when it comes to the update
cycle time, usually weekly or monthly, the update module
will activate to correct the system. Firstly, a sample set will
be generated from current streams following the sampling
strategy described in 4.4. Keywords are then extracted from
these documents utilizing TF-IDF, and a heterogeneous
graph is constructed. Top-10 keywords within each docu-
ment and document itself become vertices while keyword
co-occurrence forms edges. Some start document nodes are
randomly selected with the graph constructed, and n paths
are generated with k-step random walking. Supposing m
document nodes are filtered out from n paths, positive and
negative pairs are automatically labeled utilizing hashtags,
or other platform-specific symbols [9]. The proportion of
data based on this explicit similarity judgment is not sig-
nificant. Therefore, the text-pair construction strategy men-
tioned in 4.2 is applied to prevent the size of sample pairs
from being too small. Parts of the already known event
cluster core points are added to m to avoid spatial overlap
between the learned representations and the existing ones.
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Text-SimCLNN is then fine-tuned with the newly generated
data.

Note that: 1) Graph-based sampling makes the con-
struction of positive sample pairs very efficient, while the
construction of negative samples can be independent of the
graph; 2) Keyword co-occurrence-based edges ensure that
the positive samples obtained are of high quality; 3) 2-6 is
enough for the k value selection.

Fig. 3 gives an intuitive explanation of why the sample
pairs selected in this way are of high quality and why the
core points of known event categories should be added.

5 EXPERIMENTS

This section introduces the experiment setups, including
datasets, baselines, metrics, and hyper-parameter settings.
A pilot experiment is conducted to investigate the influence
of the ratio of positive and negative samples on contrastive
learning performance. After that, we compare our method
with baselines in an offline mode and further investigate the
effectiveness of our model under the streaming scenario. We
also conduct further experiments to explore the generaliza-
tion ability of the proposed model. At last, we visualize the
learned text representations and show the benefits. We use
a 16G ASPEED Graphics Family (rev 30) card for training.

5.1 Experiment Setups
5.1.1 Datasets
Twitter Event-2012 Dataset [38]: The Twitter Event-2012
dataset was collected from the 10th of October 2012 to
the 7th of November 2012. It covers many interesting and
significant events, including Hurricane Sandy and the U.S.
Presidential Elections. Wikipedia Current Events Portal and
some other event detection approaches are used to create a
pool of events. Specifically, after filtering duplicate tweets,
the dataset contains 66935 tweets distributed across 504
event categories.
TREC 2015 Microblog Track Dataset4: This dataset is a
part of the TREC 2015 Microblog Track, which consists of
46 manually produced equivalence classes of tweets. The
event categories defined within it own a coarser granularity
compared with the Twitter Event-2012 dataset, for instance,
Iran nuclear agreement, Greek international debt crisis, Cal-
ifornia drought agricultural effects, etc. The total number
of documents in this dataset is 3,488. Both datasets show a
long-tail distribution.

5.1.2 Baselines
We compare our method with general text representa-
tion models with common similarity measuring methods,
namely cosine and Euclidean distance. Besides, we compare
our method to PP-GCN and KPGNN, which are SOTA
event detection methods and supervised text classification
methods, i.e., GCN [52] and BERT [17], in the offline evalu-
ation experiment. The text representation models are briefly
described below. Word2Vec [53], namely Skip-Gram and
CBOW, which establish a self-supervised learning method
between words and context, directly generates word embed-
dings; thus, sentences can be embedded with the average of

4. https://trec.nist.gov/data/microblog2015.html

all the words5. GloVe obtains word vector representations
based on global word-word co-occurrence statistics. ELMo
[28] uses stacked Bi-LSTM to obtain dynamic word vectors,
and we take the average of the last hidden states of all words
as sentence embeddings. BERT [17] performs pre-training
on large corpora with the masked language model and
next sentence prediction tasks while outputs the embedded
word piece sequence vector-matrices in the language model
hidden layers. Sentence embedding can be obtained with
the average on some hidden layer, and we choose the last in
our experiments. In order to distinguish from the BERT for
text classification, it is referred to as BERTemb. PP-GCN [8]
builds an event-based heterogeneous information network
and proposes a novel graph neural network as well as a
similarity calculation method named KIES to perform event
clustering. KPGNN [9] models complex social messages into
unified social graphs and obtains dynamic sentence embed-
dings with a constantly changing heterogeneous knowledge
graph.

5.1.3 Metrics
We mainly use three metrics to evaluate the performance,
and they are briefly described below6.
ARI: The adjusted Rand index is a function that measures
the similarity of the two assignments, ignoring permuta-
tions.
NMI: The normalized mutual information uses information
entropy to measure the similarity of two distributions.
AMI: The adjusted mutual information adjusts NMI utiliz-
ing expectations.

5.1.4 Hyper-parameter Settings
As for the contrastive learning samples construction stage,
we test a series of different positive and negative sample
ratios to see how does the sample distributions affect the
performance, and it will be discussed in 5.2. Other cus-
tomized hyper-parameter settings are shown in Table 2.

TABLE 2
Customized hyper-parameter settings.

Parameter Value

Embedding size of the structural encoder, D 768
GNN hidden size, Dst 768
Number of layers of GNN 1
Learning rate 1e-5
Batch size 60
Early stop threshold 3
Cluster core points 30

5.2 Sample Distribution Influence

Statistics-based (machine) learning methods are driven by
data, and their performance is significantly affected by sam-
ple distributions and sample sizes. In this part, we explore

5. In the experiments, we find that CBOW with multiple preprocess-
ing is a solid baseline. These preprocessing methods include lowercas-
ing, removing multiple spaces, short tokens, digits, and punctuations,
replacing dash between words, and filtering stopping words.

6. https://scikit-learn.org/stable/modules/clustering.html#overview-
of-clustering-methods
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TABLE 3
Sample distributions and quantities.

Negative & positive ratio 0.1 0.5 1 2 5 10 20 full

Neg. category coverage 39/46 46/46 46/46 46/46 46/46 46/46 46/46 46/46
Num of avaliable categories (avg)/category 5.32 11.09 15.78 20.13 27.00 31.20 35.01 -

Num of neg. samples (avg)/category 6.42 27.13 54.27 108.53 271.33 542.67 1085.33 -

Note: The data used for statistics comes from sampling the training dataset with different ratios. For each sample in the dataset, one positive
sample pair will be constructed. “Number” is abbreviated as “num”, the same with “negative” and “average”. The last column “full” represents
the training dataset.
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Fig. 4. Metrics and training statistics under different negative and positive sampling ratios.

TABLE 4
Offline evaluation metrics of our method compared with baselines on the Twitter Event-2012 dataset and the TREC 2015 Microblog Track dataset.

Word2Vec GloVe ELMo BERTemb PP-GCN KPGNN GCN BERT Text-SimCLNNp/P Text-SimCLNNf/F

Tw
it

te
r ARI 0.152 0.030 0.061 0.041 0.207 0.223 0.784 0.860 0.759/0.821 0.797/0.862

NMI 0.693 0.478 0.342 0.484 0.695 0.710 0.931 0.959 0.838/0.913 0.853/0.928
AMI 0.579 0.305 0.285 0.326 0.517 0.521 0.904 0.923 0.771/0.856 0.787/0.881

T
R

EC

ARI 0.732 0.113 0.129 0.147 0.768 0.814 0.969 0.936 0.944/0.970 0.942/0.968
NMI 0.793 0.322 0.358 0.356 0.807 0.833 0.947 0.937 0.929/0.956 0.930/0.958
AMI 0.727 0.227 0.260 0.248 0.801 0.820 0.929 0.914 0.907/0.939 0.908/0.942

Note: Each experiment is carried out three times, and the displayed metrics take the average. The best results are marked in bold. The metrics
obtained by supervised classification methods are in italic.

how much the sample distribution and sample quantity will
affect the performance of the text representation method
in our framework. At the same time, the prior knowledge
derived from the experimental results further guides the
following experiments. We carry out our experiments on
the TREC dataset and choose a series of different negative
and positive sampling ratios to construct the training text
pairs while details are shown in Table 3. Evaluations are
conducted in an offline scenario in which Text-SimCLNN
is trained on the sampled text pairs generated from the
training dataset, and ARI, NMI, AMI metrics are calculated
on the test dataset.

Fig. 4 shows the performance across the series. ARI,
NMI, and AMI rise quickly and then enter a lower slope
zone with the ratio increased. In addition, the more training
data, the performance is getting better, and no performance
bottleneck is observed in our parameter settings. As shown
in the middle subfigure, the curve has an inflection point at
“2.0”. The training time cost linearly increases with the ratio
growth. Following the experimental results, we choose the
ratio as “2.0” in the latter experiments to balance training
costs and performance.

5.3 Offline Evaluation
The offline evaluation is conducted on both datasets and fol-
lows the 7:2:1 approach to construct the training, evaluation,
and test datasets. We use the CBOW form of Word2Vec and
train it following the hyper-parameters mentioned in [53].
GloVe7 and ELMo8 are implemented with the open released
sources. Considering no next sentence relations existing in
the training data, we use the popular released source9 for
BERT and fine-tune it with masked language model task
only. For one document, we directly use the average pooling
strategy to get its embedding with the model outputs, and
specific to BERT, we choose the last hidden layer states as
the model output. Density clustering with Euclidean and
cosine distance is performed with these text presentation
models, and the better is reported. We train them with the
same epochs as our method for classification methods, i.e.,
GCN and BERT, to get relatively fair judgments. PP-GCN
and KPGNN provide full-stack solutions. Therefore we
compare with them, utilizing the released sources described

7. https://github.com/maciejkula/glove-python
8. https://github.com/ltgoslo/simple elmo
9. https://huggingface.co/
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TABLE 5
The distribution and vocabulary coverage of the streaming fragments.

Periods
Category
number

(partial/total)

New
category
number

Document
number

(cate. existing/new)

Vocabulary
coverage

up to now

Vocabulary
coverage
increase

F1 (2012-10-08 2012-10-15) 112/112 112/100% 0/14,524 10,488/30,522 1.385/doc
F1,2 (2012-10-16 2012-10-22) 141/229 117/83% 1,845/18,747 14,495/30,522 0.195/doc
F1,2,3 (2012-10-23 2012-10-29) 150/361 132/88% 1,086/13,526 16,161/30,522 0.114/doc
F1,2,3,4 (2012-10-30 2012-11-05) 134/475 114/85% 1,767/12,217 17,266/30,522 0.079/doc
F1,2,3,4,5 (2012-11-06 2012-11-12) 47/504 29/61% 536/2,687 17,517/30,522 0.078/doc

The basic word piece vocabulary consists of 30,522 word pieces. Here is an example to illustrate this table. For F1,2, “141/229” means there
are 141 categories in F2 (F1,2 − F1) and “up to now” category number is “229”. Among the “141” categories, there are “117” categories (i.e.,
83% of “141”) we have never seen. Document numbers corresponding to the “seen” and “unseen” categories are “1,845” and “18,747”.

TABLE 6
Streaming evaluation ARIs. The best results in one step are marked in bold. Metric differences before and after fine-tuning are shown in brackets.

Init (F1) F2 F3 F4 F5

Word2Vec 0.613±.072 0.562±.079 (+0.127) 0.385±.048 (+0.170) 0.392±.065 (+0.112) 0.299±.051 (+0.176)
GloVe 0.533±.022 0.472±.031 (+0.277) 0.342±.040 (+0.138) 0.328±.037 (+0.125) 0.285±.035 (+0.123)
ELMo 0.143±.040 0.121±.038 (+0.021) 0.106±.012 (-0.008) 0.085±.011 (-0.024) 0.071±.012 (-0.015)
BERTemb 0.148±.017 0.119±.020 (-0.013) 0.093±.010 (+0.003) 0.088±.009 (+0.014) 0.081±.010 (-0.008)
PP-GCN 0.698±.037 0.477±.035 (+0.319) 0.413±.027 (+0.213) 0.368±.028 (+0.257) 0.313±.029 (+0.205)
KPGNN 0.732±.054 0.589±.048 (-) 0.451±.037 (-) 0.442±.044 (-) 0.445±.035 (-)

Text-SimCLNNp 0.969±.012 0.867±.010 (+0.121) 0.632±.011 (+0.198) 0.800±.011 (+0.237) 0.875±.007 (+0.250)
Text-SimCLNNP 0.983±.002 0.869±.003 (+0.153) 0.626±.006 (+0.271) 0.675±.005 (+0.214) 0.723±.002 (+0.282)
Text-SimCLNNf 0.975±.005 0.871±.007 (+0.147) 0.739±.007 (+0.230) 0.783±.006 (+0.259) 0.882±.007 (+0.296)
Text-SimCLNNF 0.990±.001 0.882±.002 (+0.174) 0.752±.003 (+0.253) 0.727±.001 (+0.221) 0.619±.002 (+0.208)

in [8], [9]. We further evaluate Text-SimCLNNs with partial
or full information available and with or without knowledge
regularization (KR), referred to as Text-SimCLNNp, Text-
SimCLNNP , Text-SimCLNNf , and Text-SimCLNNF .

As shown in Table 4, Text-SimCLNNs are better than
all the others while Text-SimCLNNF performs best. The
structural information has brought some improvements,
and knowledge regularization magnifies this improvement.
Intuitively, if some events are known, the judgment of new
documents can rely on specific knowledge that appeared
within the existing categories when comparing with them.
We argue that more formal or structural texts would benefit
more from our method than the short social ones. As we
can see, Word2Vec and GloVe gain pretty high metrics on
the TREC 2015 Microblog Track dataset. However, they gain
low ARIs on the Twitter Event-2012 dataset, which means
the clustering results are far from the ground truths. It
reveals that Word2Vec and GloVe can learn discriminative
text representations with a small amount of data, but cannot
work well with many samples and categories. Pre-trained
language models such as ELMo and BERT do not work well
on both of the two datasets. In other words, the average of
their hidden layer outputs cannot be directly used for clus-
tering. That is reasonable because their training tasks focus
on language modeling, and text differences are not explicitly
modeled. Thus the representational capacity of distances
within the learned characterization space is limited. PP-
GCN and KPGNN leverage the global structure information
of streaming data. However, the representation of language
sequences is inadequate. Besides, all these compared meth-
ods need to be adjusted carefully during clustering and will
suffer the constantly changing distance thresholds during
streaming clustering.

5.4 Streaming Scenario Evaluation

This subsection evaluates Text-SimCLNN in a streaming
scenario.

Experiments are conducted on the Twitter Event-2012
dataset only mainly because of the size and period of
the other one. The Twitter Event-2012 dataset spans five
natural weeks, and we split it into five fragments, namely as
F1, F2, F3, F4, F5. The distribution and vocabulary coverage
are shown in Table 5. High coverage of the vocabulary is
beneficial to migrate our methods to unseen documents.
The first fragment F1 is used for training Text-SimCLNNs
from scratch. After that, we perform incremental learning
on the rest fragments. At each step, we perform the update
mechanism with a sampled set (1000 new samples and 1000
existing event core points) which consists of some samples
of current fragment and part of core points of known clus-
ters and then fine-tune Text-SimCLNNs to repeat. Metrics
are calculated on the whole current fragment. Streaming
evaluation with the update mechanism is conducted in
full steps, and ARI, NMI, AMI metrics are reported. Text
representation learning baselines such as Word2Vec, GloVe,
ELMo, and BERTemb are fine-tuned at each step to enable
comparisons. PP-GCN and KPGNN are evaluated following
the instructions mentioned in [8], [9] and Text-SimCLNNp,
Text-SimCLNNP , Text-SimCLNNf , and Text-SimCLNNF

are involved.
Streaming evaluation results are shown in Table 6, 7, 8.

KPGNN constructs heterogeneous graphs for the predicted
documents. Thus, it can not be evaluated before fine-tuning.
Basically, all models will benefit from fine-tuning. The met-
rics of Word2Vec have been declining after it starts with high
metric values. Metrics of Text-SimCLNNs reduce by 10-20%
after initialization. With step increasing, the three metrics
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TABLE 7
Streaming evaluation NMIs. The best results in one step are marked in bold. Metric differences before and after fine-tuning are shown in brackets.

Init (F1) F2 F3 F4 F5

Word2Vec 0.806±.017 0.756±.031 (+0.215) 0.738±.026 (+0.173) 0.729±.018 (+0.192) 0.490±.013 (+0.091)
GloVe 0.625±.029 0.571±.025 (+0.249) 0.510±.019 (+0.223) 0.483±.022 (+0.208) 0.453±.021 (+0.183)
ELMo 0.507±.011 0.463±.017 (+0.087) 0.370±.014 (-0.011) 0.298±.010 (-0.055) 0.216±.008 (-0.074)
BERTemb 0.453±.019 0.401±.013 (-0.029) 0.338±.012 (+0.033) 0.305±.007 (+0.006) 0.281±.008 (-0.013)
PP-GCN 0.787±.014 0.657±.012 (+0.383) 0.631±.016 (+0.279) 0.628±.017 (+0.302) 0.614±.007 (+0.258)
KPGNN 0.811±.011 0.739±.010 (-) 0.688±.016 (-) 0.677±.011 (-) 0.652±.009 (-)

Text-SimCLNNp 0.931±.007 0.770±.006 (+0.096) 0.748±.006 (+0.123) 0.795±.004 (+0.141) 0.855±.005 (+0.159)
Text-SimCLNNP 0.957±.002 0.767±.001 (+0.064) 0.751±.002 (+0.083) 0.791±.001 (+0.127) 0.811±.003 (+0.104)
Text-SimCLNNf 0.935±.003 0.719±.002 (+0.072) 0.718±.003 (+0.088) 0.773±.001 (+0.125) 0.858±.003 (+0.162)
Text-SimCLNNF 0.966±.001 0.750±.002 (+0.080) 0.739±.001 (+0.059) 0.779±.002 (+0.115) 0.796±.001 (+0.102)

TABLE 8
Streaming evaluation AMIs. The best results in one step are marked in bold. Metric differences before and after fine-tuning are shown in brackets.

Init (F1) F2 F3 F4 F5

Word2Vec 0.793±.021 0.740±.017 (+0.176) 0.714±.015 (+0.148) 0.703±.022 (+0.122) 0.449±.011 (+0.134)
GloVe 0.611±.017 0.488±.019 (+0.218) 0.492±.019 (+0.180) 0.440±.025 (+0.167) 0.453±.018 (+0.199)
ELMo 0.476±.008 0.383±.012 (+0.014) 0.318±.014 (-0.005) 0.260±.009 (-0.018) 0.196±.006 (-0.013)
BERTemb 0.429±.011 0.401±.010 (-0.031) 0.312±.008 (+0.007) 0.287±.009 (+0.012) 0.275±.005 (-0.025)
PP-GCN 0.787±.014 0.657±.012 (+0.341) 0.631±.016 (+0.258) 0.628±.017 (+0.229) 0.614±.007 (+0.189)
KPGNN 0.811±.011 0.739±.010 (-) 0.688±.016 (-) 0.677±.011 (-) 0.652±.009 (-)

Text-SimCLNNp 0.927±.004 0.754±.005 (+0.124) 0.723±.001 (+0.091) 0.779±.003 (+0.137) 0.844±.002 (+0.136)
Text-SimCLNNP 0.954±.001 0.747±.002 (+0.088) 0.726±.001 (+0.076) 0.762±.001 (+0.114) 0.782±.003 (+0.092)
Text-SimCLNNf 0.932±.003 0.704±.002 (+0.061) 0.692±.001 (+0.057) 0.756±.004 (+0.109) 0.848±.003 (+0.159)
Text-SimCLNNF 0.964±.001 0.731±.001 (+0.099) 0.700±.001 (+0.081) 0.748±.002 (+0.111) 0.765±.002 (+0.084)
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Fig. 5. Time and memory costs in streaming scenarios.

are maintained at a relatively stable value interval which is
at around 0.7 and 0.8. For ARI, Text-SimCLNNF performs
best in the beginning and falls to the last at the final
step. For NMI and AMI, the four Text-SimCLNN variants
have comparable performance. In general, KR brings no
performance improvement. It is reasonable because topics
are constantly changing in the streaming scenario, and the
old ones are gradually no longer discussed, so the exist-
ing knowledge can not guide the inference stage as time
flows. Text-SimCLNNf maintains high-level metrics at the
final step, proving the effectiveness of our proposed model
architecture. After four steps, the metrics have not been
continuously reduced; that is, no apparent semantic drift
problem has been shown, which shows the effectiveness of
the update mechanism. Metrics of existing text represen-
tation learning methods decline over time and drop to a
low level, showing their weaknesses against such streaming

event detection tasks. There is a 20-40% performance gap be-
tween models specially designed for social event detection
such as PP-GCN and KPGNN and our method, showing the
superiority of the proposed Text-SimCLNN.

We further investigate the time costs and memory usages
of our method in streaming scenarios. We use 1000 doc-
uments to count the average time consumption and total
memory usages of GPU of our method and baselines. As
shown in Fig. 5, larger models and higher-dimensional em-
beddings will cause the corresponding methods to consume
more time and space when processing the same number of
documents. Specifically, Word2Vec and GloVe own minimal
consumptions of time and space, while methods involved
with BERT usually take higher costs. Text-SimCLNNs con-
sume the most time, but they are still not an order of mag-
nitude higher than the simple methods, i.e., Word2Vec and
GloVe. Our method does not specifically optimize for par-
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TABLE 9
Transfer evaluation results on the TREC 2015 MicroBlog Track dataset. The best results are marked in bold and metrics after the slashes are the

best results with offline training on the dataset.

Metircs Word2Vec GloVe ELMo BERTemb Text-SimCLNNp Text-SimCLNNP Text-SimCLNNf Text-SimCLNNF

ARI 0.349 0.285 0.035 0.088 0.788/0.944 0.810/0.970 0.740/0.942 0.755/0.968
NMI 0.574 0.501 0.062 0.277 0.790/0.929 0.809/0.956 0.788/0.930 0.788/0.958
AMI 0.443 0.379 0.047 0.134 0.682/0.907 0.698/0.939 0.673/0.908 0.662/0.942
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Fig. 6. Visualization of the documents embeddings on F5 of the Twitter Event-2012 dataset. Each node denotes one document, and each color
denotes one predicted cluster category. These categories mainly consist of forty-seven political or sports events like the 2012 U.S. election, the
2012 UEFA champions league, and some international terrorist attacks.

allelization. When predicting, only one sample is processed
at a time. In fact, our method is quite suitable for parallel
processing, but that is another systemic problem, and we
will leave it for future research. The space consumptions of
Text-SimCLNNs mainly come from the model occupations
and in-memory pre-computed event core points matrix and
are less than PP-GCN and KPGNN.

5.5 Generalization Ability
We further evaluate the generalization ability of our
method. Offline trained models with the Twitter Event-2012
dataset are used to perform event clustering on the TREC
2015 MicroBlog Track dataset. Table 9 shows the results. The
best scores of ARI, NMI, and AMI are 0.810, 0.809, 0.698,
against 0.924, 0.924, 0.896, which are gained with an offline
trained model. To our surprise, the best results are even
better than the results of Word2Vec with offline training. The
experimental results suggest that the text representations
learned by our method can generalize to other domains and
different categories. We guess that Text-SimCLNNP per-
forms better than Text-SimCLNNF because the embedding
weights in GNN do not gain adequate pre-training. Other
baselines can hardly perform like this.

5.6 Text representation Visualization
We visualize the text vectors obtained on F5 by t-SNE
as shown in Fig. 6. Text representation learning methods,
including Word2Vec, GloVe, ELMo, and BERT, can only find
out a small number of event categories, and the learned text
representations visualized in t-SNE do not show obvious
distinguishability. Compared with them, Text-SimCLNNs
discover more event categories, and the learned text repre-
sentations of Text-SimCLNNs are sparsely distributed after
visualization. Besides, Text-SimCLNNs with KR (i.e., pro-
viding prior knowledge) show a more obvious distinction.
Such a phenomenon is most evident in Text-SimCLNNF ,
which proves that it learns the most discriminative text
representations for streaming social event detection.

6 CONCLUSION

In this study, we mainly address social event detection from
the perspective of text representation learning techniques.
We propose an end-to-end text representation learning
method named Text-SimCLNN which bridges the gap, i.e.,
not wholly matching between text representation learning
and similarity measures in social event detection. In addi-
tion, we have made efforts to accelerate and optimize the
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inferring process for event detection in streaming scenarios.
These efforts include practical but straightforward ideas,
such as representing an event as a small core point set
based on CLT. We apply the proposed method to streaming
event detection scenarios through a graph-based update
mechanism. Experimental results prove the effectiveness of
our method. We further investigate the generalization ability
of Text-SimCLNN, and it suggests that well-trained Text-
SimCLNN can perform zero-shot induction with acceptable
accuracy.

A direction worth studying in the future would be
extending the semi-supervised contrastive learning in this
article into an unsupervised manner.
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