
An Optimization Strategy for PBFT Consensus Mechanism
Based On Consortium Blockchain

Feilong Wang1∗, Yipeng Ji2∗, Mingsheng Liu3∗, Yangyang Li4†, Xiong Li5,6, Xu Zhang7, Xiaojun Shi8
1SISE, Yanshan Univerity, Qinhuangdao, China; 2SCSE, Beihang University, Beijing, China;

3Shijiazhuang Institute of Railway Technology, Shijiazhuang, China; 4National Engineering Laboratory for Public Safety
Risk Perception and Control by Big Data, CAEIT, Beijing, China;

5Beijing Biwei Network Technology Co., Ltd., Beijing, China; 6Beijing Xindatek Technology Co., Ltd., Beijing, China;
7CNCERT, Beijing, China; 8Department of Science and Technology, China Electronics Technology Group Corporation

wangfeilong@stumail.ysu.edu.cn;jiyipeng@buaa.edu.cn;liums601001@sina.com;
liyangyang,shixj@cetc.com.cn;zhangxu@cert.org.cn;li.xiong@foxmail.com

ABSTRACT
At present, the transaction delay of the consortium block chain
applying the Practical Byzantine Fault Tolerance (PBFT) consensus
protocol can only reach 2 to 5 seconds, and the throughput can-
not reach tens of thousands. In addition as the number of nodes
increases, the performance of the consortium block chain declines
very quickly. The main challenge of previous research are to real-
ize communication network topology of PBFT algorithm and high
information exchange in the case of Byzantine failure, thus, this
paper proposes an optimized Byzantine fault-tolerant algorithm
to solve the performance bottleneck of the consortium chain. First
of all, for the communication network structure of the whole net-
work broadcast, we have reached an agreement on the transaction
according to the pre-prepare and prepare phases of PBFT, and gen-
erally enter the commit phase, there is a high probability that the
leader is honest, so we will communicate with the commit phase
The network is optimized as a star communication structure. Sec-
ond, combined with Tendermint, merge the view-change process
of Byzantine failures of the normal consensus process, and switch
the leader according to the longest chain principle. The algorithm
is based on a partially synchronized network model to ensure the
security and liveness of the protocol, and improve the performance
and effective robustness.

CCS CONCEPTS
•Computer systems organization→Availability; •Networks
→ Network protocol design; • Security and privacy→ Distributed
systems security.

∗ Feilong Wang, Yipeng Ji and Mingsheng Liu are contributed equally to this work.
† Yangyang Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BSCI ’21, June 7, 2021, Virtual Event, Hong Kong.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8400-1/21/06. . . $15.00
https://doi.org/10.1145/3457337.3457843

KEYWORDS
Consortium Blockchain, Performance, Byzantine Fault Tolerant,
Robustness, PBFT
ACM Reference Format:
Feilong Wang1∗, Yipeng Ji2∗, Mingsheng Liu3∗, Yangyang Li4†, Xiong Li5,6,
Xu Zhang7, Xiaojun Shi8. 2021. An Optimization Strategy for PBFT Con-
sensus Mechanism Based On Consortium Blockchain. In Proceedings of the
3rd ACM International Symposium on Blockchain and Secure Critical Infras-
tructure (BSCI ’21), June 7, 2021, Virtual Event, Hong Kong. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3457337.3457843

1 INTRODUCTION
In recent years, the performance[7] bottleneck of the consortium
block chain consensus protocol has been restricting the devel-
opment of the consortium block chain. And the fault tolerance
of the known consensus protocol has always been controversial.
When a carefully designed malicious behavior occurs to the consor-
tium chain system, the protocol cannot completely tolerate errors
and operate normally. This situation will cause the system per-
formance to be very inefficient or even destroyed. Consistency
of the agreement[19]. Although there have been many relatively
practical consensus protocols (for example PBFT, Tendermint) in
academia, the protocol must increase the cost of node communica-
tion time while ensuring consistency and termination. And when
a Byzantine error occurs, the performance of the protocol drops
very quickly, resulting in a huge difference between the Byzantine
situation and the performance under normal operating conditions.
If the proposer is malicious while the protocol is running, it will
have worse results (forking). Therefore, it is very meaningful to
design a high-performance consensus protocol that satisfies the
asynchronous[16] environment and Byzantine fault tolerance.

Currently, many consensus algorithms based on distributed con-
sensus have emerged from academia. Based on the consortium
chain scenario, the same can also be applied to this. As the first-
generation Byzantine fault-tolerant consensus protocol, the DLS[5]
consensus protocol proposes a synchronization hypothesis. After
the global stable time GST, the system tends to be synchronized.
This situation can be completely Byzantine fault-tolerant. The pro-
tocol uses the synchronization assumption to overcome the FLP[6]
impossibility theorem, and is based on the single-round[23] voting
model. In order to ensure security, the protocol adopts the method
of mutual communication and notification between nodes (full

BSCI Short Paper Session 1 BSCI ’21, June 7, 2021, Virtual Event, Hong Kong

71

https://doi.org/10.1145/3457337.3457843
https://doi.org/10.1145/3457337.3457843

network broadcast), which makes the complexity of information
communication reaches𝑂 (𝑁 2). In addition, it uses an independent
synchronized clock to synchronize time. In actual situations, the
clock generally deviates from time to time "clock drift", and it is easy
to become an attack target of a Byzantine environment, leading to
security issues for the protocol. Therefore, in 1999, on the basis of
the DLS consensus protocol, the PBFT consensus protocol proposed
by Miguel Castro and Barbara Liskov, security can tolerate (n-1)/3
Byzantine node[9]. However, this protocol also has correspond-
ing problems after overcoming some of the defects of DLS. For
example, PBFT is based on a two-round voting model, which also
increases the amount of information exchanged and the complexity
of communication (complexity issues) and when a failure occurs in
order to ensure the activity of the system, a view-change will be
generated Event, in this case, the performance will be exponentially
lower than normal.

In this paper, based on the performance and security[13] prob-
lems of the PBFT (Practical Byzantine Fault Tolerance) consensus
protocol, we have introduced a longest chain election rule. At the
beginning of each round of consensus, according to the latest local
node, block height is used to elect the leader node, and the leader
node with the largest height is elected. The election of the honest
node as the leader avoids the proposal of the Byzantine node, re-
duces the possibility of the master node doing evil, and combines a
dynamic node list to replace the consensus nodes that participated
in the previous round[28]. We also achieve unlimited parallel ex-
pansion of the number of nodes, so the performance is not affected
by the increase in the number of nodes. We divide node roles as two
roles in consensus, consensus roles and candidate roles. When a
new round of consensus is started, the candidate nodes will replace
the nodes that participated in the previous round of consensus, and
the role will be changed from candidate nodes to consensus nodes
to achieve dynamic authorization of nodes to participate in the
consensus. In terms of performance, optimize the commit phase
of PBFT and improve the communication topology of the entire
network of a star network structure. The replica nodes only need
to exchange information about the leader node, and the threshold
signature[17] mechanism is introduced. In the commit phase, the
replica node only needs to communicate with the leader node, and
the master node determines the final decision value based on the
collected information. As a result, the communication complexity
of the commit phase is reduced from 𝑂 (𝑁 2) to 𝑂 (𝑁), and the live-
ness and safety of the protocol are guaranteed through the lock
mechanism [5, 8] and the empty block mechanism. And combined
with the Tendermint consensus protocol, the view-change phase
is integrated into the normal phase of the consensus, so that the
performance is not much different from the normal situation when
a Byzantine error occurs, and the consistency and termination of
the algorithm can be guaranteed.

2 RELATEDWORK
The first major problem solved by the consortium chain consensus
protocol is the Byzantine generals problem. Regarding the consis-
tency problem with Byzantium, Lamport et al. propose two solu-
tions. The OM verbal agreement can prevent the traitor generals

from less than one-third of the total number of generals One sit-
uation reached an agreement; SM has a written agreement that
can reach an agreement in the case of any number of generals
and possible traitors. But the shortcoming of these two solutions
is that a large amount of information exchanges is required to
ensure security. On the basis of the above two solutions, Miguel
Castro and Barbara Liskov proposed a new Byzantine fault-tolerant
state machine[14] replication algorithm in [2], PBFT, which reduces
the amount of information exchange with communication and im-
proves performance. More than double the order for magnitude,
but still can be further optimized in terms of algorithm resource
consumption. For the performance problems of the BFT protocol,
many improved BFT consensus protocols have emerged based on
the PBFT protocol, such as Ripple, Tendermint, Zyzzyva, SBFT, BA,
HoneyBadgerBFT, Gosig, Tangaroa, and so on. The above proto-
col optimizes the protocol process of different levels and aims to
improve the performance of the consensus algorithm.

This part is the improvement strategy of different BFT protocols.
Ripple consensus algorithm addresses the problem of high latency
of existing Byzantine fault-tolerant algorithms in asynchronous
networks, and proposes to use trusted sub-networks in collective
networks to circumvent this problem. On the basis of PBFT, Ten-
dermint simplifies the process of the BFT[11] protocol based on
the gossip protocol[3], merges the leader switching process of the
normal process, and uses a novel mechanism to ensure termina-
tion. For the time being, the status of the replicas is inconsistent,
and then the request sequence is corrected to be positive. Such
a process has a significant performance improvement compared
with the existing BFT protocol. SBFT[24] adopts four optimization
strategies, collector, threshold signature[17], optimistic fast path,
redundant servers. Compared with the PBFT consensus algorithm
in performance, it can provide twice the throughput and 1.5 times
the transaction delay. This allows it to provide significantly better
performance in large-scale distributed systems (such as consortium
chains).

Algorand[25] adopts a new Byzantine protocol BA, and is based
on verifiable random function to increase the flexibility of participat-
ing in consensus. Nodes can privately check whether to participate
in the consensus process of the next set of transactions. Fault tol-
erance avoids malicious targeted attacks on selected consensus
nodes, and can achieve transaction delays of less than one minute.
The Tangaroa[27] protocol is a Byzantine fault-tolerant consensus
protocol based on the Raft protocol, which increases the complexity
of the protocol to ensure security, fault tolerance and liveness.

Different from the above BFT protocol optimization strategy,
the protocol proposed in this paper still guarantees consistency
and activity in the asynchronous network environment, and can
provide good performance and good robustness. The protocol uses
a longest chain election rule and a dynamic node replacement list
to increase the security and scalability of the protocol, and optimize
the communication mode in the core phase Commit phase based on
the PBFT consensus protocol, reducing the secondary communica-
tion process to linear process. And through the threshold signature,
Gossip mechanism to reduce the workload of the agreement, aiming
to achieve the purpose of reducing transaction delay and improving
performance.

BSCI Short Paper Session 1 BSCI ’21, June 7, 2021, Virtual Event, Hong Kong

72

3 SYSTEM MODEL
In this Byzantine fault-tolerant model, we assume that the system
is composed of a set of node lists 𝑁 = {𝑛0, 𝑛1 ...} and any number
of clients. The clients and nodes must pass Identity verification
can participate in the system and communicate with each other
through the p2p[22] network. And suppose there is a list of faulty
nodes 𝐶 = {𝑐0, 𝑐1 ...} in the node list, and a list of Byzantine nodes
𝐹 = {𝑓0, 𝑓1,}, the list of loyal nodes 𝐺 = {𝑔0, 𝑔1, ...}, and the
number of loyal nodes satisfies 𝐺 > 𝑚𝑎𝑥 (𝐶, 𝐹). And any number
of malicious clients.

Possible failures of the failed node:
(1) Node is down
(2) node cannot send/receive information

Possible Byzantine error:
(1) Node maliciously rejects/sends messages
(2) Node maliciously sends inconsistent information
(3) The node cooperates with other malicious copies to commit

evil
(4) Malicious client behavior

We assume that the network is based on a partially synchronized
network model. During the operation of the system, the communi-
cation between nodes and the communication between the client
and the node can ensure that there is a certain upper bound Δ
for the delay in sending and receiving information, but not The
specific size of the delay is unclear. That is to say, although the
information will be delayed, the message will be received after a
period of time. And set a timeout clock at each node to calculate
the message transmission timeout. Based on the above assumptions
and restrictions, our agreement can ensure the activity of the BFT
algorithm.

This model is based on Byzantine nodes and loyalty nodes with
some restrictions. 1. Byzantine nodes cannot forge the identity of
loyal nodes and tamper with information, but can only forge the
identities of other Byzantine nodes. 2. The loyal node can accurately
send information on the correct node. 3. The node can clearly know
the identity of the sender of the information. 4. Missing information
can be detected. Based on these restrictions, loyal nodes can make
the same correct decision, and Byzantine nodes cannot interfere
with the execution process of loyal nodes, thereby ensuring the
consistency of the BFT algorithm.

4 PROTOCOL
4.1 Normal Path
In the FLP Impossibility Theorem, it has been proved that in the
distributed consensus algorithm, even if there is an unreliable com-
munication process, it will cause the consensus to fail to reach a
consensus result. So our algorithm is based on the PBFT consen-
sus protocol and built on a partially synchronous communication
model. And the algorithm is a consensus process based on round
voting. Each round corresponds to a height. Each round contains
three main workflows, pre-prepare, prepare, and commit. Its algo-
rithm is similar to the Tendermint consensus algorithm for master
node switching in the Byzantine situation. It also uses a lock mech-
anism and an empty block mechanism to integrate the view change
process in a Byzantine error situation into a normal round. Differ-
ent from the PBFT consensus protocol, this algorithm improves the

voting process of the entire network broadcast in the commit phase
to a star network voting. During the commit voting process, each
replica node sends the voting results to the master node, and the
master node collects the votes. The node is equivalent to a collector,
and finally combines the voting results to send a message to the
replica node whether to commit the proposal. Such an improvement
will make the communication complexity of the commit process
linearly complex.

When each round is opened, only nodes in the same height can
participate in the consensus voting for that round. The remaining
nodes state in idleness. Each round of consensus includes a pre-
elected master node and some replica nodes, and the replica nodes
are in the same state. And the next round of consensus will re-elect
the master node and replica node. This algorithm uses a longest
chain election rule and a dynamic node list to select consensus
nodes. At the beginning of each round, the election of the master
node is based on the latest height of the local block chain. The
leader node with the largest block height is elected to ensure that
the block chain is up-to-date and reliable, and will be selected before
the start of the next round of consensus. Replacing the consensus
nodes that participated in the previous round from the dynamic
node list ensures the security of the entire system and prevents
some malicious nodes from attacking the system.

pre-preapre phase: The new round corresponds to a height.
When the new round starts, the node also enters the pre-prepare
phase. At the beginning of this phase, if the master node does
not lock the block of the previous round, it will construct a block
based on the transaction information submitted by the client, and
encapsulate the status information about the master node into a
message packet and broadcast it to other replica nodes. Otherwise,
the locked block will be regarded as the proposed block, and the
proof of the locked block will be attached (2f+1 pieces of prepare
voting information were received in the previous round). After the
master node broadcasts the proposal message, it will start a timer.
If the proposal message sent by the master node is not received
within the timeout period, the node will vote against the proposal
(prevote for nil), which is equivalent to voted for an empty pro-
posal. If the node receives the proposal, it will verify the validity
of the proposed block, including verifying the status message and
signature in the proposal message. At the end of the pre-prepare
stage, the verification result (approve or oppose the proposal) will
be encapsulated into a prepare message and broadcast to other
replica nodes.

prepare phase:After the node broadcasts the prepare voting
information, the node enters the prepare phase. At this stage, nodes
will collect voting information (prepare messages) of each node on
the proposal. Collecting prepare votes at this stage mainly includes
four situations. The first case is that the 2f+1 prepare message
about the proposed block is received normally, and the legality
of the received prepare message is checked. If the legality check
passes, the proposed block of this round will be locked(lockedBlock
and lockedView). The second case is that 2f+1 prepare messages
are received, but it is a prepare message for the empty block nil.
The third case is that the received legal prepare message about the
proposed block proposal or the empty block nil is less than 2f+1, the
fourth case is No 2f+1 prepare messages were received within the
timeout period of this phase. When the replica node belongs to the

BSCI Short Paper Session 1 BSCI ’21, June 7, 2021, Virtual Event, Hong Kong

73

first case, that is, under normal circumstances, it will vote for the
proposed block proposal and send a pre-commit proposal message
to the leader; the remaining three cases are all sent to the leader
pre-commit nil message to the leader. At the end of the prepare
phase, the master node will collect the pre-commit message sent
by the replica node.

commit phase:The improvement strategy of this protocol is
mainly for this stage. Figure1 and Algorithm1 provides an overview
of the entire commit after optimization.When the replica node sends
the pre-commit message, it enters the commit phase. The purpose
of this phase is to execute the proposed block and place the block
in the local database. The leader node will collect the pre-commit
message of the replica node and verify the legitimacy of themessage,
and will check whether the collected legal pre-commit message
satisfies f+1. If there are f+1 pre-commit messages for the proposed
block proposal, a proof of the f+1 pre-commit messages will be
generated and encapsulated in the commit message and signed
and broadcast to the replica node, otherwise an empty area will be
broadcast Block nil commit message; if f+1 empty block pre-commit
messages are collected or f+1 any proposed pre-commit messages
are not collected, then a commit nil message will also be signed and
broadcast . The replica node receives the commit proposal message
and has the opportunity to write the proposed block into the log.
The block height is increased by one to enter the consensus of a
new height. Otherwise, the height remains unchanged. The next
round of consensus on the proposal will continue.

Synchronization phase:At the end of a round of consensus,
our protocol adds a new synchronization process, which aims to
align the state of the failed node with the replica node. Because
during the commit phase, it may be down or offline due to network
reasons or the node’s own reasons, which will cause the submitted
block to time out and not be written to the ledger. This is not a
malicious error, and the uncommitted block itself is a consensus.
And is recognized, so the faulty node can request the missing blocks
from other normal nodes. When the failed node recovers, it will
broadcast a status request message to other nodes, and other nodes
will feed back the latest height of their local ledger and the hash
of the block according to the type of the message. If the faulty
node locked a block in the previous round, and the corresponding
hash of the block is equal to the feedback block hash, it can be
directly written to the block, and the missing block can be directly
synchronized from other nodes.

Figure2 describes the entire workflow of the improved protocol.
The consensus of each round includes three stages: pre-prepare,
prepare, and commit.

4.2 View Change
This protocol does not have an explicit view change phase like
most BFT consensus protocols. For example, PBFT is specifically
the view-change process of the master node switching in the Byzan-
tine situation. When enough nodes suspect that the leader node is
a Byzantine node, they will actively broadcast a view-change mes-
sage and collect enough 2f+1 valid messages according to whether
The view-change message then becomes the new leader. The entire
view-change phase is very time-consuming, therefore, the perfor-
mance of PBFT in the Byzantine situation is very different from the

performance under normal conditions. In response to the above
situation, we learned from Tendermint’s processing method and
integrated view-change into the normal consensus process instead
of dealing with this special situation separately.

In the Byzantine situation, the block may not be placed in the
current round. The purpose of view-change is to switch the Byzan-
tine leader to a loyal node, and put the blocks that have not been
placed in this round to the next round and continue to complete the
placement when the leader node is loyal. Therefore, our agreement
draws on the Tendermint consensus protocol, and only needs to
complete the work that the view-change needs to complete in the
normal consensus process. First, at the beginning of a new round,
actively switch the leader node. Secondly, at the end of the round, if
the block has not been placed due to a Byzantine error, you can lock
the block for the round first, and then place an empty block, which
will not affect the security of the protocol and cause a fork. Finally,
at the beginning of the next round (now the new leader), unlock
the locked round and block, and use the unlocked block as the
proposed block to continue the normal consensus process. Unlike
the view-change process of most BFT protocols, our protocol does
not require network bandwidth requirements and a large amount
of information exchange, so the performance under the Byzantine
situation is not much different from that under normal conditions.

Figure 1: Overview of commit phase

Figure 2: Overview of a protocol round

BSCI Short Paper Session 1 BSCI ’21, June 7, 2021, Virtual Event, Hong Kong

74

Algorithm 1: Consensus Algorithm
Data: replica 𝑖 , current block 𝑏 (𝑖), current round 𝑟 (𝑖),

current height ℎ(𝑖)
Result: block to be submitted 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

1 commit phase:
2 for 𝑖 in 𝑁 {0, 1, 2..𝑖, 𝑖 + 1..} do
3 if i lock 𝑏 (𝑖) then
4 send < 𝑃𝑟𝑒 − 𝑐𝑜𝑚𝑚𝑖𝑡, ℎ(𝑖), 𝑟 (𝑖), ℎ𝑎𝑠ℎ(𝑏 (𝑖)) > to

leader
5 else
6 send < 𝑃𝑟𝑒 − 𝑐𝑜𝑚𝑚𝑖𝑡, ℎ(𝑖), 𝑟 (𝑖), 𝑁𝑈𝐿𝐿 > to leader
7 end
8 end
9 if leader receive 𝑓 + 1

< 𝑃𝑟𝑒 − 𝑐𝑜𝑚𝑚𝑖𝑡, ℎ(𝑖), 𝑟 (𝑖), ℎ𝑎𝑠ℎ(𝑏 (𝑖)) > then
10 broadcast < 𝐶𝑜𝑚𝑚𝑖𝑡, ℎ(𝑖), 𝑟 (𝑖), ℎ𝑎𝑠ℎ(𝑏 (𝑖)) >
11 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑏 (𝑖)
12 ℎ(𝑖) ← ℎ(𝑖) + 1
13 𝑛𝑒𝑤𝑅𝑜𝑢𝑛𝑑 (𝑟 (𝑖) ← 0)
14 else
15 broadcast < 𝐶𝑜𝑚𝑚𝑖𝑡, ℎ(𝑖), 𝑟 (𝑖), 𝑁𝑈𝐿𝐿) >
16 𝑟 (𝑖) ← 𝑟 (𝑖) + 1
17 end

5 SAFETY AND LIVENESS
5.1 Safety
5.1.1 Loyalty nodes will not commit two different blocks 𝐵 and 𝐵′

at the same height. In our hypothetical system model(section III)
, the number of loyal replicas is assumed to be greater than the
maximum number of failed replicas and Byzantine replicas, that
is, greater than one-third of the total number of replicas. When a
loyal replica submits a block B at height h, it means that the leader
node has received at least f+1 pre-commit messages about block
B, which proves that more than f+1 replicas have received 2f+1
corresponding areas The prepare message of block B. If another
block B’ is submitted, it is proved that more than f+1 replicas have
received the prepare message corresponding to block B’ of 2f+1,
which means that f+1 Byzantine nodes voted for B and B’ at the
same time,but the system assumes that Byzantine nodes do not
exceed one-third of the total number of nodes. Obviously, this
situation does not exist.

There are two different blocks at the same height. The reason
for this situation is probably that the leader node is a Byzantine
node. In the pre-prepare phase, the leader node sends block B and B’
proposals to different replicas. The communication mechanism and
round voting mechanism of the protocol can avoid the occurrence
of bifurcation, which guarantees the security of the protocol.

5.1.2 Block 𝐵 proposed by the Byzantine leader node will not be
written to the database. When the client submits a request to the
system, the request will be broadcast to each replica node in the
system, including the leader node. The leader node sorts and packs
into blocks according to the request, and enters the pre-prepare
phase to broadcast to the replica node Proposal block. If the leader

node is a Byzantine node, the order of the request may be disrupted
and then broadcast to other nodes, and other nodes will have the
requested backup locally. When the proposal is received, the replica
node will verify the validity of the request. Once invalid, it will Vote
against, so the leader Byzantine node cannot allow the loyal replica
node to submit invalid blocks, thereby destroying the security of
the protocol.

This situation exists. When the system enters the Commit phase,
if the leader node is a Byzantine node, it may send inconsistent
or even not send commit messages to other nodes. There are sev-
eral scenarios here: 1. If the leader node receives the pre-commit
message of a certain block of f+1, and sends a message of <com-
mit,h,r,nil> to other replica nodes, and the mechanism of the proto-
col The f+1 pre-commit message QC certificate[?] will be attached
when sending the commit message, and other replica nodes will ver-
ify this QC to understand whether the message sent by the leader
node is true, and the loyal node will make the correct decision based
on the verification result. 2. The leader node will not broadcast the
commit message to other nodes regardless of whether it receives
f+1 pre-commit messages. Once the protocol’s timeout mechanism
detects that the commit message has not been received over time,
it will place an empty block and proceed to download Re-elect
the master node once and continue to formulate the block in the
previous round to ensure the consistency of the agreement.

5.2 Liveness
Since our leader node is generated through a random verifiable
function, no Byzantine node can interfere with the process. And
there is no way to increase the probability of a Byzantine node being
elected leader. Although the Byzantine node may be elected as the
leader, under the assumptions of the system model and the rules of
the agreement, the Byzantine node cannot destroy the termination
of the agreement, that is, its liveness. The protocol can run forever
under the system model, unless the system is actively shut down.

This protocol is based on a partially synchronized networkmodel,
that is, information transmission has a definite but unknown upper
bound. When the protocol is running, the nodes may wait for mes-
sages to be transmitted to each other. For example, the nodes are
in the prepare phase, and the nodes wait for each other’s prepare
message. The node will collect 2f+1 prepare messages. If the collec-
tion is full, it will enter the commit phase, but The node will not
wait for the collection of prepare messages all the time, because
this will destroy the activity of the protocol, so we set a timeout
timer and wait for a limited time. Once it times out, the protocol
will continue to run.

5.2.1 Any honest replica locks a block 𝐵 in round 𝑟 , and block B will
be committed in round 𝑟 ′ >= 𝑟 . When the node locks the block 𝐵 in
the round 𝑟 , it means that the node has entered the commit phase
and has collected 2f+1 prepare messages from different replica
nodes. At this time, the nodes in the agreement have reached an
agreement on block B, and only block B needs to be placed in the
commit phase. However, in round r, there may be a faulty node or
the block cannot be placed on the market due to network reasons.
The solution of our agreement is to reach agreement on the block
height of each node through a synchronization process.

BSCI Short Paper Session 1 BSCI ’21, June 7, 2021, Virtual Event, Hong Kong

75

To make matters worse, the leader node is a Byzantine node,
which will deliberately destroy the order for block B in round r, that
is, make the block height between nodes inconsistent. For example,
there is a situation where the leader broadcasts different blocks
and B’to the nodes in the pre-prepare phase, so that in the end,
because the two blocks cannot reach a consensus (security) at the
same height, an empty block will be placed. Block B will continue
the consensus process in the r+1 round until the node status is
consistent.

5.2.2 In each round of consensus, there are enough consensus nodes.
If more than one-third of honest nodes are locked on different
blocks in different rounds, the leader will eventually broadcast the
proof of the corresponding locked block on the later round, which
will make it more reliable The locked node on the previous round is
unlocked. The unlocked nodes can continue to vote on subsequent
proposals, which can ensure that enough nodes participate in the
consensus, thereby ensuring the Liveness of the system.

In addition, the timeout period for each node to wait to receive
the complete proposal block sent by the leader and possible proof
information can be increased as the round progresses, so that when
the size of the proposal is relatively fixed, the entire network can
guarantee the proposed block Received by each node.

6 CONCLUSION
The PBFT (Practical Byzantine Fault Tolerance) consensus algo-
rithm is based on a two-round voting mechanism, which greatly
improves the performance of the alliance chain, but its complex
communication structure and inefficient robustness make the per-
formance of the alliance chain not good. Therefore, we have im-
proved and optimized based on the PBFT consensus protocol. Com-
pared with PBFT, we have implemented an efficient Byzantine
fault-tolerant algorithm, and combined with Tendermint to achieve
the effective robustness of the protocol. In the master node election
algorithm, according to the longest chain election rule, the mas-
ter node is replaced at the beginning of each round to reduce the
possibility of the Byzantine leader node doing evil. And to simplify
the communication structure of the PBFT core commit phase to
reduce the communication complexity to 𝑂 (𝑁). Combining the
empty block mechanism of Tendermint’s locking mechanism to
merge the view-change process of PBFT into the normal consensus,
effectively improving the robustness of the protocol. Finally, the
performance of the protocol has not been greatly improved. In the
future, the work content of the protocol will be further optimized
for better performance.

ACKNOWLEDGMENT
The authors of this paper were supported by NSFC through grants
U20B2053, U19B2023, U19B2036, and Key Research and Develop-
ment Project of Hebei Province through grant 20310101D.

REFERENCES
[1] drdobbs. The Byzantine Generals Problem[J]. Acm Transactions on Programming

Languages & Systems, 1982, 4(3):382-401.
[2] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance.In Proceed-

ings of the Third Symposium on Operating Systems Design and Implementation,
OSDI ’99, pages 173–186, Berkeley, CA, USA,1999. USENIX Association.

[3] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.
PhD thesis, 2016.

[4] Miller A , Xia Y , Croman K , et al. The Honey Badger of BFT Protocols[C]// Acm
Sigsac Conference on Computer & Communications Security. ACM, 2016:31-42.

[5] Cynthia, Dwork, Nancy, et al. Consensus in the presence of partial synchrony[J].
Journal of the Acm, 1988.

[6] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[7] Distler T , Rüdiger Kapitza. Increasing performance in byzantine fault-tolerant
systems with on-demand replica consistency[C]// Conference on Computer
Systems. ACM, 2011.

[8] M. Burrows. The Chubby lock service for loosely coupled distributed systems. In
Proceedings of the 7th Symposium on Operating Systems Design and Implemen-
tation, pages 335–350, 2006.

[9] M. Correia, N. F. Neves, and P. Ver´ıssimo. How to tolerate half less one Byzantine
nodes in practical distributed systems. In Proceedings of the 23rd International
Symposium on Reliable Distributed Systems, pages 174–183, 2004.

[10] J. Cowling, D. Myers, B. Liskov, R. Rodrigues,and L. Shrira. HQ replication: A
hybrid quorum protocol for Byzantine fault tolerance. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, pages 177– 190,
2006.

[11] R. Guerraoui, N. Kneˇzevi´c, V. Qu´ema, and M. Vukoli´c. The next 700 BFT
protocols. In Proceedings of the EuroSys 2010 Conference, pages 363–376, 2010.

[12] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative
Byzantine fault tolerance. In Proceedings of the 21st Symposium on Operating
Systems Principles,pages 45–58, 2007.

[13] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction to improve
fault tolerance. In Proceedings of the 18th Symposium on Operating Systems
Principles, pages 15–28, 2001.

[14] F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Computing Survey, 22(4):299–319, 1990.

[15] S. Sen,W. Lloyd, andM. J. Freedman. Prophecy: Using history for high-throughput
fault tolerance. In Proceedings of the 7th Symposium on Networked Systems
Design and Implementation, 2010.

[16] Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine asynchronous
consensus. In Distributed Computing, 22nd International Symposium, DISC 2008,
Arcachon, France, September 22-24, 2008. Proceedings, pages 438–450, 2008.

[17] Victor Shoup. Practical threshold signatures. In Advances in Cryptology - EU-
ROCRYPT 2000, International Conference on the Theory and Application of
Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, pages
207–220, 2000.

[18] HariGovind V. Ramasamy and Christian Cachin. Parsimonious asynchronous
byzantine-fault-tolerant atomic broadcast. In Principles of Distributed Systems,
9th International Conference, OPODIS 2005, Pisa, Italy, December 12-14, 2005,
Revised Selected Papers, pages 88–102, 2005.

[19] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement
in the presence of faults. J. ACM, 27(2):228–234, 1980.

[20] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant
confirmation. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages
3–33, 2018.

[21] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol
in asynchronous networks. In Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II,
pages 643–673, 2017.

[22] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

[23] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for
byzantine agreement. J. Comput.Syst. Sci., 75(2):91–112, 2009.

[24] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny
Pinkas, Michael K. Reiter, Dragos- Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. SBFT: a scalable decentralized trust infrastructure for blockchains.
CoRR, abs/1804.01626, 2018.

[25] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017, pages 51–68, 2017.

[26] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-
tive recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[27] Y. Gilad et al. “Algorand: Scaling Byzantine Agreements for Cryptocurrencies”,
2017.

[28] Dou, Yingtong, et al. "Enhancing graph neural network-based fraud detectors
against camouflaged fraudsters." Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 2020.

BSCI Short Paper Session 1 BSCI ’21, June 7, 2021, Virtual Event, Hong Kong

76

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Protocol
	4.1 Normal Path
	4.2 View Change

	5 Safety And Liveness
	5.1 Safety
	5.2 Liveness

	6 Conclusion
	References

