
MineRBS: Detecting Android Malware Based on Runtime Behavior Sequence

Hao Jin, Yangyang Li
National Engineering Laboratory for

Public Safety Risk Perception
and Control by Big Data (PSRPC), CAEIT

Beijing, China
e-mail: jh cetc@163.com, liyangyang@cetc.com.cn

Ying Yang
The Third Research Institute of

Ministry of Public Security
Shanghai, China

e-mail: yangying@mcst.org.cn

Abstract—The runtime behaviors performed by Android ap-
plications reflect their potential characteristics. While the imple-
mentation of a malicious attack usually requires the cooperation
of multiple runtime behaviors, so mining the association between
runtime behavior sequences can effectively detect unknown
malicious applications. Most researchers concerned the statistical
properties of a single behavior, and there was little work studying
the statistical properties of the association between runtime be-
haviors. In this paper, we present an Android malware detection
system MineRBS based on a novel sequential pattern mining
method, called RB AprefixSpan (PrefixSpan Abbreviated
Project Mining of Runtime Behaviors), to dig out runtime
behavior associations. RB AprefixSpan algorithm could
discover runtime behavior sequential patterns from known
malware families and build the behavior sequential pattern
database to detect mal-ware. What’s more, RB AprefixSpan
algorithm uses abbreviated projection database instead of
projection database in PrefixSpan to improve the spatial
performance. Through experiments, we verity the correctness
and effectiveness of our system.

Keywords-sequential pattern mining; Android malware
detection; runtime behavior sequences

I. INTRODUCTION

According to a recent report from Gartner [1], Android has
been growing market share in the smartphone operating system
market, which in the first quarter of 2017 is at 86.1%. Android
users can download applications not only from Google’s
official market Google Play, but also from other third-party
markets. Google takes security measures to check whether
the new submitted app is benign to reduce malware, while
third-party markets usually do not have sufficient malware
scanning, which lead to the wide spread of malware. It is
reported that, the number of Android malware has increased
from hundreds of thousands to more than ten million since
2012, which indicates that Android smartphones are facing an
explosive growth of malware threats [2].

This work was supported in part by Strategic Consulting Research
Project of Ningxia Research Institute, Chinese Academy of Engineering (No.
2019NXZD7) and Major Special Science and Technology Project of Hainan
Province (No. ZDKJ2019008).

Generally, there are two types of malware detection ap-
proaches. One is to perform static malware detection based on
features like required permissions, sensitive API calls, etc. The
systems leverage static information to generate signatures for
detection [3, 4]. However, there is evidence that with growing
popularity of static malware detection, malware increasingly
conducts obfuscation and transformation attacks to break static
methods. Researchers have proposed several approaches to
solve the problem [5-7]. The other one is the dynamic analysis
system, which has been proposed in several researches [8-
10]. These systems identify malware through monitoring the
behaviors of an application at runtime but suffer from great
challenge that how to trigger sufficient suspicious behaviors.

According to a study [11], malicious applications with
similar behaviors should be classified as being in the same
malware family, such as Fake, DroidKungFu, ADRD, etc.
Furthermore, survey [12] reveals that over 98% of novel
malware are actually variants from existing malware families.
These variants adopt sophisticated techniques to evade existing
static analysis-based detection systems, while the malicious
behaviors of core functionalities like privilege escalation, re-
main unchanged [13]. With the observation, runtime behaviors
have been used extensively to detect [13] and classify [14]
malware with high accuracy. As of yet, most researchers
simply take the single runtime behavior into consideration,
and there is little work studying the statistical properties of
the associations between runtime behaviors.

Data mining-based approaches can automatically infer de-
tection patterns from features extracted by program or dynamic
analysis from malware, and have promising approaches for de-
tecting malware. Some researchers perform static or dynamic
analysis to extract features from PC applications and adopt
data mining algorithms to achieve malware detection. Yang
et al. focus on the permissions requested by Android applica-
tions, and propose an Android malware detection system based
on frequent pattern mining algorithm [15].

In this paper, we find that the associations between runtime
behavior sequences can greatly reflect the potential charac-

2020 12th International Conference on Communication Software and Networks

978-1-7281-9815-6/20/$31.00 ©2020 IEEE 216

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2020 at 15:33:23 UTC from IEEE Xplore. Restrictions apply.

teristic of the application. With the observation, we build an
Android malware detection system, named MineRBS, based
on sequence pattern mining of runtime behavior sequences
of applications. We firstly leverage the CopperDroid dynamic
analysis tool to extract runtime behaviors of known Android
malware families [10], and construct the runtime behavior
sequence database. Then, we propose a novel sequential pat-
tern mining method RB AprefixSpan(Abbreviated Project
Mining of Runtime Behaviors based on PrefixSpan) to dis-
cover runtime behaviors associations in each malware fam-
ily. RB AprefixSpan algorithm uses abbreviated projection
database instead of projection database in PrefixSpan. After
that, we can construct behavior sequential pattern database
for each malware family. Lastly, we extract runtime behavior
sequences of the application to be tested, and match the
behavior sequential pattern databases to identify whether it is
malicious. Experiments on a large number of real-world apps
reveal the effectiveness of our approach on detecting malware
variants and novel malware.

The reminder of the paper is organized as follows. We
introduce the necessary background in Section II. After that in
Section III, we present our Android malware detection system
MineRBS based on RB AprefixSpan algorithm. In Section
IV, we report the evaluation of our experimental results. We
discuss the conclusion in Section V.

II. BACKGROUND

In this section, we introduce the essential background
knowledge of the technique of runtime behavior analysis and
sequence pattern mining algorithm.

A. Runtime Behavior Analysis

Researchers conclude in [14] that, the dynamic runtime
behavior analysis should operate at the level of system calls
where high-level application semantics are obscured, to solve
the problem of obfuscation and native code. Besides, [8] points
out that pure system calls cannot characterize the runtime
behaviors of an Android application, as they fail to reconstruct
inter-process and inter-component communications, which are
essential to understanding runtime behaviors of the applica-
tion.

We therefore leverage CopperDroid [10], an approach which
can reconstruct the integrated runtime behaviors of Android
applications. According to a single point of observation (i.e.,
system calls), CopperDroid can reconstruct runtime behav-
iors of Android applications at multiple levels (i.e., pure
system calls, decoded binder communication, and abstracted
behavioral patterns). What’s more, the dynamic analysis of
CopperDroid is agnostic to the runtime system, thus it can
be applied to all Android operating systems while making no
modifications to the system.

B. Sequence Pattern Mining Algorithm

Sequence pattern mining is a data mining method for
temporal data, which aims at discovery of frequent episodes as

patterns in a sequence database [16]. The main idea is to dis-
cover a frequently occurs sequence of events. Sequence pattern
mining approaches are suggested for numerous applications,
such as the analyses of customer purchase behaviors, DNA
sequences, web access patterns, and other data-mining tasks.

Most of the sequence pattern mining algorithms proposed
previously are based on the Apriori heuristic first illustrated in
[17]. However, though Apriori-like sequential pattern mining
approach reduces the search space, it bears the inherent costs
of the enormous set of candidate sequences and repetitive
scans of the databases. Pei et al. proposes a novel sequential
pattern mining method PrefixSpan in [18]. The main idea
of PrefixSpan is that, it only examines the prefixes, and
only projects their postfixes into projected databases. In each
projected database, it generates sequential patterns only by
exploring the frequent patterns. PrefixSpan has the advantage
that it runs considerably faster than both Apriori-based GSP
algorithm [19] and FreeSpan [20].

III. SYSTEM DESIGN

In this section, we firstly introduce the overview of
MineRBS. Next, we explain each module respectively to
describe how it works for malware detection by constructing
behavior sequential pattern database for multiple malware
families.

A. System Overview

Fig. 1 gives an overview of MineRBS, and its dynamic
analysis and data mining components. Malware families for
constructing the feature base are passed to CopperDroid for
runtime behavior extraction, including system calls and high-
level runtime behaviors (see III-B). After constructing the run-
time behavior sequence database (see III-C), MineRBS designs
an improved PrefixSpan algorithm RB AprefixSpan (see
III-D) to discover frequent runtime behavior subsequences as
patterns, and constructs behavior sequential pattern database
(see III-E) for malware detection (see III-F).

B. Dynamic Analysis

As discussed above, the runtime behaviors of an Android
application are fully described by system calls and binder
communications. For a single application, MineRBS uses
CopperDroid as its runtime behavior extractor, which runs the
application in an unmodified Android image on the top of
CopperDroid emulator. CopperDroid can perform out-of-the-
box behavior analysis on arbitrary Android applications au-
tomatically, and characterize low-level OS-specific and high-
level Android-specific behaviors.

Tam et al. examined the results of CopperDroid’s analyses
on a number of Android malware, and classified the high-
level behaviors to six macro classes (see left column in Table
I). Each class consists of one or more behavioral models,
which can be expressed by a set of actions (see right column
in Table I). The complexity of these actions varies greatly.
Among them, some actions are defined as a single system call
(i.e., execve), some are defined as a set of binder transactions

217

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2020 at 15:33:23 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Architecture of MineRBS.

(such as those under the class “SMS Send” and “Personal Info.
Access”), others are defined as a series of system calls (such
as those under the class “Network Access”). For constructing
the runtime behavior sequence database, MineRBS uses the
classes of high-level behaviors generated by CopperDroid.

TABLE I. Behavioral Classes Extracted by CopperDroid

Behavioral Class Subclass
S1: File Access Open, Read, Write

S2: Exec External Application
Shell, Generic, Privilege escalation,

Install APK
S3: Network Access DNS, HTTP, Other

S4: Personal Info. Access
SMS, Contacts, Phone Info.,

Location
S5: Send SMS

S6: Make/Alter Call

C. Runtime Behavior Sequence Database

The workflow of constructing runtime behavior sequence
database is shown in Fig. 2. To construct the runtime behavior
sequence database for each Android malware family, we
firstly choose runtime behaviors in CopperDroid behavioral
classes, and number each behavior to construct a suspicious
runtime behavior database, which consists of all runtime
behaviors that frequently occur in Android malware. Next,
we number the runtime behaviors extracted by CopperDroid
of malware samples in each malware family. As input for the
RB AprefixSpan algorithm, the order number of suspicious
runtime behaviors of Android applications must be expressed
by runtime behavior sequences. Let R denote all suspicious
runtime behaviors and N denote the order numbers of all
these suspicious runtime behaviors. Given an application a,

let N Behavior(a) represent its behavior sequence. Then, for
each suspicious runtime behavior ri ∈ R, the order number of
which ni ∈ N , we add ni to N Behavior(a) if a produce the
runtime behavior ri. Thus, the runtime behavior sequence of a
can be expressed as N Behavior(a) =< n1n2 · · ·ni · · · >.
Finally, each runtime behavior sequence is stored to runtime
behavior sequence database for further mining to characterize
the behavior feature of each malware family.

Figure 2. Workflow of constructing the runtime behavior se-quence
database.

D. RB AprefixSpan Algorithm

The RB AprefixSpan algorithm takes the runtime be-
havior sequences of each app in each malware family as
input, and analyzes the associations between these sequences
to discover the frequently occurred sequential patterns in each
malware family. In this section, we first briefly introduce
several definitions in sequence pattern mining. Then, we recall
the major idea of PrefixSpan. Finally, we present the improved
algorithm RB AprefixSpan that takes advantages of both
the speed of PrefixSpan and the low space overhead of GSP.

a) Definitions: Let I = {i1, i2, · · · , in} represent a set
of behavior items. A behavior itemset is a subset of I . A
behavior sequece is an ordered list of behavior itemsets. A
behavior sequence s is donated by < s1s2 · · · si >, where
sj is a behavior itemset, i.e., sj ⊆ I for 1 ≤ j ≤ l. sj
is also called a behavior element of the behavior sequence,
and denoted as (x1x2 · · ·xm), where xk is a behavior item,
i.e., xk ∈ I for 1 ≤ k ≤ m. A behavior item can occur
at most once in an element of a behavior sequence, but
can occur multiple times in different elements of a behavior
sequence. The number of instances of items in a behavior
sequence is called the length of the sequence. A behavior
sequence with length l is called a l-sequence. A behavior
sequence α =< a1a2 · · · am > is called a subsequence of
another behavior sequence β =< b1b2 · · · bn > and β is
a super sequence of α, donated as α ⊆ β, if there exist
intergers 1 ≤ j1 < j2 < · · · < jm ≤ n such that
a1 ⊆ bj1 , a2 ⊆ bj2 , · · · , am ⊆ bjm . The support of a behavior
sequence α in a behavior sequence database S is the number
of tuples < sid, s > containing α, i.e., supports(α) =| {<
sid, s >| (< sid, s >∈ S) ∧ (α ⊆ s)} |. Given a positive
integer ε as the support threshold, a behavior sequence α

218

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2020 at 15:33:23 UTC from IEEE Xplore. Restrictions apply.

is called a frequent behavior sequential pattern in behavior
sequence database S if the behavior sequence is contained by
at least ε tuples in the database, i.e., supports(α) ≥ ε. A
behavior sequential pattern with length l is called a l-pattern.

b) PrefixSpan: Researchers introduced PrefixSpan in
[18]. We can see the major idea of PrefixSpan algorithm is that,
the projecting operation is based purely on frequent prefixes,
instead of frequent subsequences, as the latter can always be
found by growing the former. The algorithm has the efficiency
that it does not need to generate candidate sequences and the
projected databases keep shrinking. Thus, compared to GSP,
PrefixSpan searches a much smaller space, and takes a much
better shrinking factor comparing with FreeSpan. The detailed
algorithm of PrefixSpan is illustrated in [18]. Due to limited
space, no more tautology here.

c) RB AprefixSpan: The projected database con-
structed by PrefixSpan contains several infrequent items,
which need to be scanned in every step. For the problem, we
consider GSP [19], an Apriori-like method which states the
fact that any super-pattern of a nonfrequent pattern should not
be frequent. By combining PrefixSpan and GSP, we propose
an improved algorithm RB AprefixSpan. The workflow
of RB AprefixSpan is mainly based on PrefixSpan, while
adding the pruning phase of GSM before the projection phase
to construt a abbreviated projection database to replace the
original one.

• Abbreviated projection database

Let the behavior sequence database S given in Table II be
an example database and we set min support to be 4. We can
see that the behavior items set of S is {B1, B2, B3, B4, B5,
B6}.

TABLE II. A Behavior Sequence Database

Sequence id Behavior Sequence
1 < B1(B1, B2)(B1, B3)B4(B3, B6) >
2 < (B1, B4)B3(B2, B3) >
3 < (B5, B6)(B1, B2)(B4, B5)B3 >
4 < (B1, B6)B3, B2, B3 >

RB AprefixSpan firstly scans S and collects the support
for each behavior item. The items are listed in support de-
scending order as: b item =< B1 >: 4, < B2 >: 4, < B3 >:
4, < B4 >: 3, < B6 >: 3, < B5 >: 1. As min support = 4,
the length-1 sequential patterns include < B1 >,< B2 >
and < B3 >. According to these three prefixes, we can
partition the set of sequential patterns into three subsets
respectively. In this way, the projected databases constructed
by PrefixSpan are listed in the third column in Table III. As
< B4 >: 3, < B6 >: 3, and < B5 >: 1 don’t meet the
criteria, i.e. min support = 4, we can infer that the sequential
patterns cannot contain < B4 >,< B5 > and < B6 >.
Consequently, we can prune < B4 >,< B5 >,< B6 > items
in the original projected databases to construct abbreviated
projected databases, shown in the fourth column in Table III.

TABLE III. Projected Databases and Abbreviated Projected
Databases

Prefix S |p Projected database Abbreviated projected database

< B1 > S |< B1 >

< (B1, B2)(B1, B3)B4(B3, B6) >
< (, B4)B3(B2, B3) >
< (, B2)(B4, B5)B3 >
< (, B6)B3, B2, B3 >

< (B1, B2)(B1, B3) (B3,) >
< (,)B3(B2, B3) >
< (, B2)(,)B3 >
< (,)B3, B2, B3 >

< B2 > S |< B2 >

< (B1, B3)B4(B3, B6) >
< (, B3) >

< (B4, B5)B3 >
< B3 >

< (B1, B3) (B3,) >
< (, B3) >
< (,)B3 >
< B3 >

< B3 > S |< B3 >
< B4(B3, B6) >
< (B2, B3) >
< B2, B3 >

< ((B3,) >
< (B2, B3) >
< (B2, B3) >

We can find that the abbreviated projected database is
smaller than the original projected database. In reality, the
reduction coefficient is considerable as the following reasons:
1) With the growth of prefixes, the number of behavior sequen-
tial patterns in abbreviated projected database will become
much smaller. 2) Comparing with PrefixSpan, the abbrevi-
ated projected database constructed by RB AprefixSpan
contains only length-1 sequential pattern. Thus, the reduction
coefficient is much more significant than PrefixSpan.

With the abbreviated projected database, we can reserve
critical behavior items, and prune those unconsidered ones.
As we just remove infrequent behavior items, the abbreviated
projected database would not loss important information on
identifying malware.
• RB AprefixSpan algorithm

Based on the lemmas of PrefixSpan discussed in [18], we
have the algorithm of RB AprefixSpan as follows.

Algorithm 1 RB AprefixSpan
Input: S: a behavior sequence database

min support: the minimum support threshold
Output: The complete set of behavior sequential patterns
Method: abbreviated pb(S, p)

PrefixSpan(S, 0, <>)
Subroutine: PrefixSpan(S |p, l, p)
Parameters:
p: a behavior sequential pattern
l: the length of p
S |p: the p-abbreviated projected database, if p 6=<>; otherwise, S

Method:
1. Scan S |p to find frequent behavior items b item which satisfies
one of the conditions that:

(a) b item can be tacked to the last behavior element of p, and
generate a behavior sequential pattern;
(b) < b item > can be assembled to p, and generate a behavior
sequential pattern.

2. For each frequent behavior item b item, append it to p, and
generate a behavior sequential pattern p′, then output p′;
3. For each p′, construct p′-abbreviated projected database S |p′ ,
and call PrefixSpan(S |p′ , l + 1, p′).

Take the behavior sequence database S shown in Table

219

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2020 at 15:33:23 UTC from IEEE Xplore. Restrictions apply.

II as example, we describe how RB AprefixSpan finds
the complete set of sequential patterns. We get the length-
1 sequential patterns < B1 >, < B2 > and < B3 >, and
construct their abbreviated projected database respectively in
Table III. We then scan S |< B1 > and collects the support for
each behavior item. The items are listed in support descending
order as: b item =< B2 >: 4, < B3 >: 4, < B1 >: 1.
As min support = 4, we can prune < B1 >, and get the
length-2 sequential patterns < B1, B2 > and < B1, B3 >.
According to these two prefixes, we can partition S |< B1 >
into two subsets respectively, shown in Table IV.

TABLE IV. Abbreviated Projected Database S |< B1, B2 >
and S |< B1, B3 >

Prefix S |p Abbreviated projected database

< B2 > S |< B1, B2 >
< (, B3) (B3,) >< (, B3) >

< (,)B3 >< B3 >
< B3 > S |< B1, B3 > < (B3,) >< (B2, B3) >< B2, B3 >

Repeat the procedure for S |< B2 >, we can prune < B1 >
and < B2 >, and get the subset S |< B2, B3 >, shown in
Table V.

TABLE V. Abbreviated Projected Database S |< B2, B3 >

Prefix S |p Abbreviated projected database
< B3 > S |< B2, B3 > < (B3,) >

Similarly, repeat the procedure for S |< B3 >, the items are
listed in support descending order as: < B3 >: 3, < B2 >:
2, < B1 >: 0, all of which don’t satisfy the min support.
Thus, the prefix < B3 > cannot grow.

Repeat the procedure for S |< B1, B2 >,S |< B1, B3 >
,S |< B2, B3 > respectively, we find that only S |<
B1, B2 > can generate a new behavior sequential pattern
< B1, B2, B3 >. The abbreviated projected database S |<
B1, B2, B3 > is shown in Table VI.

TABLE VI. Abbreviated Projected Database
S |< B1, B2, B3 >

Prefix S |p Abbreviated projected database
< B3 > S |< B1, B2, B3 > < (B3,) >

In summary, we can get the length-1 sequential patterns
< B1 >,< B2 > and < B3 >; length-2 sequential patterns
< B1, B2 >,< B1, B3 > and < B2, B3 >; and length-3
sequential patterns < B1, B2, B3 >.

E. Behavior Sequential Pattern Database

We have constructed runtime behavior sequence database
in III-C, in which each malware family maintains several
applications with several runtime behavior sequences.
Let F donate all malware families, expressed as
F = {f1, f2, · · · , fn}. Given a malware family fi (i.e., fi ⊆ F

for 1 ≤ i ≤ n) which holds a set of applications, donated
as {a1, a2, · · · , am}. Then the runtime behavior sequences
maintained by fi can be donated as N Behavior(fi) =
{N Behavior(a1), · · · , N Behavior(am)}. We input
N Behavior(fi) into the RB AprefixSpan algorithm
and analyze the association between these sequences to
discover the frequently occurred sequential patterns, donated
as S Pattern(fi). S Pattern(fi) is stored to construct the
behavior sequential pattern database.

F. Detection

Once the package file of an unknown application is sub-
mitted, MineRBS firstly leverages CopperDroid to extract its
runtime behavior sequences. And then MineRBS matches the
behavior sequential pattern database to identify whether the
application is malicious.

IV. EVALUATION

In this section, we perform several experiments to evaluate
MineRBS. We firstly introduce the experimental samples (IV-
A), and then present the evaluations on the correctness and
performance of RB AprefixSpan comparing with PrefixS-
pan (IV-B). Finally, we evaluate MineRBS and find that our
approach can achieve near-perfect effectiveness in detecting
malware variants and promising effectiveness in detecting
novel malware (IV-C).

A. Samples

The construction and evaluation of MineRBS are mainly
based on a sizable dataset of real-world Android malware
samples, which we split into two parts. The first p art was
collected and characterized by Jiang et al. originally [11], and
extended by Arp et al. into the Drebin dataset later [21]. The
dataset contains 5560 malware samples from which we extract
runtime behaviors for 5246. For the remaining 314 ones, we
find most are not valid. The second dataset consists of 90 novel
malware samples, in which some are recently gathered from
security vendors, and others are developed by ourselves. We
classify these novel malware samples based on their runtime
behaviors. The category of the novel malware and their number
in each category are listed in Table VII. In addition, we employ
500 benign samples to evaluate the capability of MineRBS on
identifying benign applications.

TABLE VII. Novel Malware Category

Malware Category No. of Malware in Each Category
S1: File Access 13

S2: Exec External Application 18
S3: Network Access 14

S4: Personal Info. Access 25
S5: Send SMS 11

S6: Make/Alter Call 9

220

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2020 at 15:33:23 UTC from IEEE Xplore. Restrictions apply.

B. Evaluation of RB AprefixSpan compared with PrefixS-
pan

a) Correctness: In the experiment, we pick 500 malware
covering several malware families to construct the runtime
behavior sequence database. The database is one of the input of
PrefixSpan and our RB AprefixSpan algorithm. The other
input is min support. Through repeated experiments, we set
min support to be 3. Finally, we construct two behavior
sequential pattern databases for the selected malware families
by using PrefixSpan and RB AprefixSpan respectively.
Table VIII shows the result set of length-k patterns, we only
give parts of patterns here. We can get from Table VIII that, the
result set of length-k patterns mined by RB AprefixSpan
and PrefixSpan is the same. Thus, we can prove the correctness
of RB AprefixSpan.

TABLE VIII. Length-k patterns mined by PrefixSpan and
RB AprefixSpan

Length-k patterns PrefixSpan RB AprefixSpan

Length-1 patterns

< B2 >< B6 >
< B7 >< B9 >
< B10 >< B13 >

< B16 >

< B2 >< B6 >
< B7 >< B9 >
< B10 >< B13 >

< B16 >

Length-2 patterns
< B2, B6 >< B2, B9 >
< B2, B13 >< B6, B10 >
< B9, B10 >< B10, B16 >

< B2, B6 >< B2, B9 >
< B2, B13 >< B6, B10 >
< B9, B10 >< B10, B16 >

Length-3 patterns

< B2, B6, B10 >
< B2, B9, B10 >
< B6, B10, B16 >
< B9, B10, B16 >

< B2, B6, B10 >
< B2, B9, B10 >
< B6, B10, B16 >
< B9, B10, B16 >

b) Performance: Fig. 3 compares RB AprefixSpan
with PrefixSpan on the time performance. We set the size of
runtime behavior sequence database to be 200, 500, 1000 and
2000, min support to be 3, and then evaluate the running
time of the two algorithms respectively. We can get from Fig.
3 that, as the size increases, RB AprefixSpan outperforms
PrefixSpan. In pratical test, we find our RB AprefixSpan
algorithm has a much better space-time performance in de-
tecting.

0

5

10

15

20

25

30

35

40

200 500 1000 2000

T
im

e
 (
s
)

Size of runtime behavior sequence database

PrefixSpan RB_AprefixSpan

Figure 3. Time performance of RB AprefixSpan and PrefixSpan.

C. Evaluation of MineRBS in Detecting Malware
a) Effectiveness on detecting malware variants: To eval-

uate the effectiveness of MineRBS on detecting malware vari-
ants, we take one famous malware family in Drebin database
(i.e., DroidKungfu) as example in the following analysis.
The DroidKungfu malware family consists of four variants
(i.e., DKF1, DKF2, DKF3 and DKF4), in which DKF1 and
DKF2 perform malicious behaviors, e.g., reading/writing file,
executing root exploit, etc; DKF3 and DKF4 leverage various
methods (like code obfuscation) to evade static detections.

We perform experiments to evaluate the effectiveness of
MineRBS in applying behavior sequential patterns mined from
several malware (e.g., DKF1, DKF2 and DKF3) to detect
malware variant within the same malware family (e.g., DKF4)
and benign samples. The results are shown in Table IX.

TABLE IX. Detection Results of MineRBS

Malware Variants No. of Samples TPR FNR TNR FPR ACC
DKF1 30 1.00 0.00 1.00 0.00 100.0%
DKF2 30 0.97 0.03 1.00 0.00 99.8%
DKF1 295 0.93 0.07 1.00 0.00 97.5%
DKF1 90 0.91 0.09 1.00 0.00 98.6%
DKF1 445 0.93 0.07 1.00 0.00 98.8%

We set min support to be 3 in our experiment. For
example, we first use runtime behavior sequences of all DKF1,
DKF2 and DKF3 samples to construct the behavior sequential
pattern database. Then, we match runtime behavior sequences
of all DKF4 and benign samples to the database. We find
that, 82 out of 90 are identified as malware variants, so TPR
is 82/90. There are 8 DKF4 samples which are not detected,
so FNR is 8/90. What’s more, all 500 benign samples are
identified as non-malicious correctly, so TNR is 1 and FPR
is 0. Besides, we can get from Table IX that, the detection
accuracy of DKF3 and DKF4 is a little lower than that
of DKF1 and DKF2. The reason may be that some DKF3
and DKF4 variants change runtime behavior sequences in
interacting with the command and control server. In summary,
the detection accuracy of MineRBS on detecting malware
variants is above 95%.

b) Effectiveness on detecting novel malware: In this
experiment, we use 90 samples discussed above to test
MineRBS’s effectiveness on detecting novel malware. We first
use runtime behavior sequences of all 5246 malware samples
to construct the behavior sequential pattern database. Then,
we match runtime behavior sequences of these novel malware
to the database, and gain a detection accuracy of nearly
87.8%. The result reveals our RB AprefixSpan algorithm is
promising in detecting novel malware, as most novel malware
are in fact variants from existing malware families, of which
the core runtime behavior sequences are similar.

V. CONCLUSION

In this paper, we present the design of an approach,
named MineRBS, which detects Android malware based on
sequence pattern mining of runtime behavior sequences of

221

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2020 at 15:33:23 UTC from IEEE Xplore. Restrictions apply.

applications. The novel sequential pattern mining method
RB AprefixSpan proposed by MineRBS can discover run-
time behavior sequential patterns from known malware fam-
ilies and build the behavior sequential pattern database to
detect malware. In addition, RB AprefixSpan algorithm
uses abbreviated projection database to replace the projection
database in PrefixSpan to improve the spatial performance.
The experimental results show that RB AprefixSpan can
effectively dig out frequent behavior sequential patterns for
malware detection, with better space-time performance than
existing sequence pattern mining algorithms. What’s more,
experiments verify the effectiveness of MineRBS on detecting
both malware variants and novel malware.

REFERENCES

[1] Gartner, Gartner says Android has been growing market share in the
smartphone operating system market, which in the first quarter of 2017
is at 86.1%, http://www.gartner.com/newsroom/id/3725117, 2017.

[2] Mobile security risk report, 2017 q1, http://bbs.360.cn/thread-14972358-
1-1.html.

[3] T. Debiaze, “Detecting malicious behavior for android applications by
static analysis,” Online: https://github.com/maaaaz/androwarn, 2015.

[4] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker: scal-
able and accurate zero-day android malware detection,” in International
Conference on Mobile Systems, Applications, and Services, 2012, pp.
281-294.

[5] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, and P. D.
Geus, “Going Native: Using a Large-Scale Analysis of Android Apps
to Create a Practical Native-Code Sandboxing Policy,” in Symposium
on Network and Distributed System Security (NDSS’16), 2016.

[6] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and L.
Cavallaro, “DroidSieve: Fast and Accurate Classification of Obfuscated
Android Malware,” in ACM on Conference on Data and Application
Security and Privacy, pp. 309-320, 2017.

[7] J. Seo, D. Kim, D. Cho, T. Kim, I. Shin, and J. Seo, “FLEXDROID:
Enforcing In-App Privilege Separation in Android,” in Symposium on
Network and Distributed System Security (NDSS’16), 2016.

[15] H. Yang, Y. Q. Zhang, Y. P. Hu and Q. X. Liu, “Android Malware
Detection Method Based on Permission Sequential Pattern Mining
Algorithm,” in Journal on Communications [J], S1, 2013, pp. 106-115.

[8] L. K. Yan, and H. Yin, “DroidScope: Seamlessly Reconstructing the OS
and Dalvik Semantic Views for Dynamic Android Malware Analysis,”
in Proceedings of the 21st USENIX conference on Security symposium,
2013, pp. 29-29.

[9] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: automatic security
analysis of smartphone applications,” in ACM Conference on Data and
Application Security and Privacy, 2013, pp. 209-220.

[10] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic Reconstruction of Android Malware Behaviors,” in Network
and Distributed System Security Symposium, 2015.

[11] Y. Zhou, and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy, 2012,
pp. 95-109.

[12] Symantec. The future of Mobile Malware, accessed on Nov. 2016.

[13] P. Feng, J. Ma, and C. Sun, “Selecting Critical Data Flows in Android
Applications for Abnormal Behavior Detection,” in Mobile Information
Systems [J], 2017, in press.

[14] S. K. Dash, G. Suareztangil, S. Khan, K. Tam, M. Ahmadi, and J.
Kinder,“DroidScribe: Classifying Android Malware Based on Runtime
Behavior,” in Mobile Security Technologies, 2016, pp. 252-261.

[16] H. Mannila, H. Toivonen, and A. Inkeri Verkamo, “Discovery of frequent
episodes in event sequences,” in Data Mining & Knowledge Discovery
[J], 1997, 1(3), pp. 259-289, in press.

[17] R. Agrawal, and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in International Conference on Very Large
Data Bases, Morgan Kaufmann Publishers Inc., 1994, pp. 487-499.

[18] J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto, “PrefixSpan: mining
sequential patterns efficiently by prefix-projected pattern growth,” in
International Conference on Data Engineering, 2002, pp.215-224.

[19] R. Srikant and R. Agrawal, “Mining sequential pattems: Generaliza-
tions and performance improvements,” in International Conference on
Extending Database Technology (EDBT’96), 1996, pp. 3-17.

[20] J. Han, J. Pei, M. C. Hsu, “FreeSpan: frequent pattern-projected se-
quential pattern mining,” in ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2000, pp.355-359.

[21] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket,” in Network and Distributed System Security Symposium,
2014.

222

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on September 17,2020 at 15:33:23 UTC from IEEE Xplore. Restrictions apply.

