
Effective Android Malware Detection
Based on Deep Learning

Yueqi Jin1,2,3, Tengfei Yang1(B), Yangyang Li1, and Haiyong Xie1,3

1 National Engineering Laboratory for Public Safety Risk Perception and Control
by Big Data (NEL-PSRPC), Beijing, China

yangtengfei1@cetc.com.cn
2 Key Laboratory of Electromagnetic Space Information, Chinese Academy

of Sciences, Beijing, China
3 University of Science and Technology of China, Hefei, China

Abstract. Android, the world’s most widely used mobile operating sys-
tem, is the target of a large number of malwares. These malwares have
brought great trouble to information security and users’ privacy, such as
leaking personal information, secretly downloading programs to consume
data, and secretly sending deduction SMS messages. With the increase of
malwares, detection methods have been proposed constantly. Especially
in recent years, the malware detection methods based on deep learning
are popular. However, the detection methods based on static features
have a low accuracy, and others based on dynamic features take a long
time, all this limits its scope.

In this paper, we proposed a static feature detection method based on
deep learning. It extracts specific API calls of applications and uses DNN
network for detection. With the dataset composed about 4000 applica-
tions and extremely short time, it can achieve an accuracy rate of more
than 99%.

Keywords: Android security · Deep learning · Malware detection

1 Introduction

Mobile phones are now an integral part of our lives, and the most widely used
mobile operating system is Android, which accounts for about 85% of the world
[1]. Android is used not only on mobile phones, but also on various mobile
platforms, such as tablets. Obviously, these mobile devices store a huge amount
of users’ personal information and even money, so they need to be protected
carefully. Is different from the PCs, however, only few years, the popularity of
mobile devices in security is not popularized the decades of the PCs, which leads
to more and more malwares aimed at the android. According to the report by
Symantec [2], 20% Android apps are malwares.

Initially, the idea was to use signature files for detection. But with the out-
break of malwares, this kind method witch depends on huge signature library
c© Springer Nature Singapore Pte Ltd. 2020
X. Sun et al. (Eds.): ICAIS 2020, CCIS 1252, pp. 206–218, 2020.
https://doi.org/10.1007/978-981-15-8083-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8083-3_19&domain=pdf
https://doi.org/10.1007/978-981-15-8083-3_19


Effective Android Malware Detection Based on Deep Learning 207

has gradually become ineffective. Later, people tried running applications with
virtual machines to monitor applications’ malicious behavior directly ([3,4]).
Obviously this method is the most direct, but there may be missing informa-
tion, and takes a long time. And new malwares increased the delay time in
starting up or even directly detect the virtual machine environment for counter-
monitoring. Around 2010, the concept of machine learning emerged, and a series
of detection methods using machine learning classifier appeared, such as support
vector machine(SVM). It extracts some static feature codes in the application or
feature logs generated by runtime, and uses various classifier of machine learning
to discriminate malwares. This method also achieved great results.

Deep learning is the strengthening of the machine learning. The concept of
using deep learning networks to detect Android malware was first proposed in
2014. With AlphaGo beat Sedol Lee in 2016, the value of deep learning was seen
by more people, and detection methods based on deep learning were constantly
proposed. In general, the effect of deep learning is closely related to features and
network.

Our Contribution: We used 1092 sensitive system API calls as features and
Deep Neural Network for training. When tested in a dataset consisting of about
4,000 applications, the accuracy was consistently over 99% with minimal time
consumption.

The Reminder of the Paper Is Organized as Follows: Section 2 reviews
previous work on android malware detection. Section 3 introduces the application
features and DNN network related preliminaries. Section 4 and Sect. 5 gives the
implementation details of our experiments and results with evaluation.

2 Related Work

2.1 Static-Feature Detection

The earliest tests using completely static features were published in 2016 ([5–
7]). The first two papers are similar in that they use DBN to learn using the
permissions requested by applications and the APIs called as features. [7] intro-
duced the concept of API-blocks and achieved 96% accuracy. In 2017, [8] was
the first to introduce CNN, which reshaped feature vectors into matrices and
trained them by image recognition. This idea also appeared in [9] and [10] of the
same year, achieving nearly 100% accuracy.

The biggest drawback of CNN and DBN is the high time complexity, which
is not suitable for real-time scanning. In 2018, [11] first used DNN to train the
static permissions-api feature, which is also the most similar to our work. The
DNN network had a significant speed advantage on the (relative to the image)
low-dimensional feature set, and they had a 95.67% F1-score.



208 Y. Jin et al.

Fig. 1. Smali code

2.2 Dynamic-Feature Detection

Detection that relies entirely on dynamic features is less frequent because it takes
a long time. In 2016 and 2017, [12] adopted the method of emotional analysis
to realize malware identification by monitoring system calls and treating system
call sequence as text. [13] used Stacked Autoencoders (SAEs) to scan malware
and identify new malwares according to the graphical representation of extracted
system calls in Linux.

2.3 Hybrid-Feature Detection

[14] in 2014 was the first attempt to apply deep learning to android malware
detection. It extracted permissions and sensitive API calls as static feature, used
actions monitored by running applications in sandbox as dynamic features, and
used DBN for training. This method obtained a good accuracy about 93.5%. In
[15], a detection method based on HADM is proposed, which uses Self-Encoder to
study the features of applications, and then uses SVM for classification, achieving
95% accuracy. [16] extracts the dynamic and static features, then uses LSTM to
analyze, and good results has been achieved.

3 Our Method Description

3.1 Feature Extraction

We can get the “smali” code by decompiling the application file, as Fig. 1. The
function calls in the smali code have a format similar to Ljava/long/Object;-
><init>()V. What we care about is which system sensitive APIs the applica-
tion calls. For example, SmsManager;->sendTextMessage is used to send text
messages, ITelephony$Stub$Proxy;->call is used to make phone calls. Of course,
these APIs are called in benign applications, so we want to use neural networks
to help us analyze the underlying information between these calls.

– Step1: After decompressing the Apk file to get the “classes.dex” file, we
decompile it using the “baksmali” program to get the smali code.

– Step2:1 Document all statements in smali code that contain “;->”.
1 Step 2 is not necessary, but it improves the efficiency of the search in step 3.



Effective Android Malware Detection Based on Deep Learning 209

– Step3: Using our list of sensitive APIs, we organize the application’s corre-
sponding smali code into boolean vectors.

Here we will explain step 3. Assumes that our list of sensitive APIs contains
n values, in order [f1, f2, ..., fn], so our Boolean vector from step 3 should have
n dimensions, let’s call that [x1, x2, ..., xn]. For each i ∈ {1, 2, ..., n}, xi = 1 if
and only if fi appears in the smali code. In other words, the program calls the
API fi. For example, smali code contains f1 and f3, not f2, so the corresponding
boolean vector is [1,0,1,...]. We don’t care about the order or time of API calls
here, just whether they appeared in the smali code.

3.2 Sensitive API List

The core of our results is a more typical sensitive API list. These APIs are
selected from the PSCout dataset [17], which contains a large number ofs sys-
tem APIs and their corresponding permissions. We counted how often these
APIs appeared in thousands of benign applications and malwares (The applica-
tion dataset used here is completely different from the experimental dataset in
next Section). We find APIs that appear more frequently in malwares and less
frequently in benign applications that make up this list2. Compared with other
similar methods, we dropped the less distinguishing features of permission and
expanded the list of API features in selecting features. These APIs perfectly rep-
resent the malicious nature of the program. Based on this list, we can steadily
improve the accuracy rate to 99%. At the same time, we can use a simpler
network than other methods, thus reducing its running time while maintaining
accuracy.

3.3 Training DNN Model

DNN training process, like other networks, is divided into forward propagation
and back propagation.

Forward Propagation. For each neuron in each hidden layers in Figure ??,
we can think of it as a perceptron like Fig. 2. Its output is the following:

bin =
m∑

i=1

wiai

m is the number of neurons in the upper layer. Unlike perceptrons, its output
can only be used as the input of the next layer by introducing nonlinear factors
through activation function. The RELU function is used in our network. So the
output of the neurons in each of the hidden layers of DNN is

bout = relu(bin) = relu(
m∑

i=1

wiai)

2 In appendix, we will show part of this list.



210 Y. Jin et al.

Fig. 2. Propagation

Fig. 3. Dropout

Input the n-dimensional vector obtained in the previous step into the input
layer, the output of the output-layer is calculated layer by layer, which completes
forward propagation.

Back Propagation. Forward propagation is to sum the output of the upper
layer by the weight of edges to get the input of the next layer. Backpropagation is
the process of updating the weight of each edge, so that the final value obtained
by forward propagation is close to the actual label. The function that measures
this approximation is called the loss function. The purpose of back propagation
is to reduce the value of loss function. Our network uses the cross entropy loss
function. To achieve this goal, we need to use the gradient descent method
to change the weight of each edge iteratively. The specific calculation of back
propagation is relatively complex, which can be referred to the paper, but will
not be described here.

3.4 Dropout

Overfitting is a common problem in deep learning. The specific manifestation of
overfitting is that the trained model has a higher accuracy in the training set, but
a lower accuracy in the test set. In order to solve this problem, Hinton proposed
Dropout in 2012 [18], which can effectively alleviate the overfitting phenomenon.



Effective Android Malware Detection Based on Deep Learning 211

Dropout simply means that during the forward propagation, some neurons
stop working at a certain probability (i.e., output value is 0). Compared with
Figure ??, black neurons shown in Fig. 3 are inactive. In this way, the general-
ization performance of the model is stronger and it is less likely to be overly
dependent on some localb features. During the training, we set a probability to
prevent overfitting, and the difference in accuracy in the test set can be clearly
seen during the test. (See next section for details)

4 Experiment Result and Evaluation

4.1 Application Dataset

We selected a dataset composed of about 4,000 applications. Among them, about
2,000 samples of benign applications are from XiaoMi-APPStore (after scanning
by anti-virus software, there may still be malwares in them, but we temporarily
consider this dataset reasonable), about 2000 malwares come from the Drebin
Dataset ([19,20]). We selected almost all kinds of applications and made sure
there were no duplicate elements in our dataset. We take 600 applications (300
in each case) as the test set and the rest as the training set.

4.2 Sensitive API List

The list of sensitive APIs refers to the PSCout Dataset [17], which contains about
35000 system APIs and their corresponding permissions in the latest version. We
have selected 1092 representative ones for our sensitive API list.

4.3 Runtime Environment

In order to prove that our model is efficient, we did not adopt a more efficient
GPU, instead, model training was done using a PC CPU. Our experiment ran in
Windows 10, and hardware setting are 4 GB DDR4 RAM and Intel(R) Core(TM)
i5-3470 CPU.

4.4 Experimental Results Under Different Parameters

Compared to other papers, we only selected the static feature of API calls, but
we chose a larger list of sensitive APIs than others. Here we test three metrics:
precision, recall, accuracy, and time consumption.

– Precision: Currently classified into positive sample categories, the propor-
tion correctly classified.

– Recall: The percentage of all positive samples that are currently assigned to
a positive sample category.

– Accuracy: The ratio of correctly predicted samples to the total predicted
samples.



212 Y. Jin et al.

Table 1. Results with different network model

Malware/Benign = 1 : 1, Train : Test = 3400 : 600, Epochs = 200

Network Learning rate Precision(%) Recall(%) Accuracy(%) Time cost(s)

[500] 0.008 99.67 99.33 99.5 67

[1000, 100] 0.005 99.01 99.67 99.33 114

[1000, 500, 100] 0.0005 99.33 99.67 99.5 155

[1000, 600, 200, 50] 0.00005 98.36 100 99.167 176

Network [500] represents a network with only one hidden layer of 500 neurons, others
in a similar way

Table 2. Results with different network model

Malware/Benign = 1 : 1, Train : Test = 3000 : 1000, Epochs = 200

Network Learning rate Precision(%) Recall(%) Accuracy(%) Time cost(s)

[500] 0.008 99.2 99.6 99.4 51

[1000, 100] 0.005 99.4 99.4 99.4 99

[1000, 500, 100] 0.0005 99.01 99.8 99.4 144

[1000, 600, 200, 50] 0.00005 99.2 99 99.1 169

Because the accuracy of the experiment may fluctuate slightly, in this section,
we give the most common accuracy in the experiment and its corresponding
precision and recall. In appendix 2, we give the accuracy list of 10 consecutive
experiments under different conditions.

Table 1 describes the influence of network depth on the results when the
number of positive and negative examples is equal. It can be seen from the table
that all networks can achieve good results. Our training set has about 3400
samples. When the BATCH SIZE is set to 50, there are about 65 iterations per
epoch. In fact, our algorithm has basically converged after the first few iterations
of the first epoch, and Fig. 4 below shows the accuracy curve of the first epoch.
It can be seen that the accuracy rate after a epoch has been basically stable, and
the iteration time of a epoch only takes a few seconds, which is almost negligible.

In the above experiment, Train: Test is 34:6. Next, we adjust this ratio to
3:1. Take 1000 samples as the test set, and the rest as the training set. Also use
the above several networks for training. Table 2 shows the experimental results.
It can be seen that under such conditions, all networks can still maintain an
average accuracy rate above 99%.

In practice, the number of benign applications is obviously greater than that
of malwares, so we reduced the proportion of malwares in the training set to
conduct training. In the following experiments, Malware : Benign = 1 : 2, and
the number of samples in the test set is 600. Table 3 shows the experimental
results. From the results, the network accuracy rate of 2 or 3 hidden layers is
stable at 99%–99.5%.

In Table 4, we further reduce the proportion of malicious programs and set
Malware : Benign = 1 : 5. It can be seen from the results that the accuracy



Effective Android Malware Detection Based on Deep Learning 213

Table 3. Results with different network model

Malware/Benign = 1 : 2, Train : Test = 2550 : 600, Epochs = 200

Network Learning rate Precision(%) Recall(%) Accuracy(%) Time cost(s)

[500] 0.008 99.33 99.67 99.5 50

[1000, 100] 0.005 99.01 99.67 99.33 99

[1000, 500, 100] 0.0005 99.33 99.67 99.5 148

[1000, 600, 200, 50] 0.00005 98.03 100 99 159

Table 4. Results with different network model

Malware/Benign = 1 : 5, Train : Test = 2040 : 600, Epochs = 200

Network Learning rate Precision(%) Recall(%) Accuracy(%) Time cost(s)

[500] 0.008 100 98.67 99.33 41

[1000, 100] 0.005 99.33 99 99.167 79

[1000, 500, 100] 0.0005 99.01 99.67 99.33 123

[1000, 600, 200, 50] 0.00005 97.39 99.67 98.5 138

rate is maintained at 98%–99%. In this experiment, due to the low proportion of
malwares, the accuracy of the model trained from scratch fluctuates to a certain
among. In general, increasing the proportion of benign procedures in training
concentration will have a negative impact on the training effect, but the impact
is limited.

In addition, we tested the accuracy of the test set after the model was trained
from scratch with 20 epochs under various parameters. Table 5, 6, 7, 8 and
9 shows the results of 10 consecutive experiments under each parameter. The
experiment of Table 5 uses networks like other tables but without the dropout
layer. We can see that after removing the Dropout layer network is not stable. To
see from the table, the new model, the minimal number of epochs can achieve
good accuracy. This shows that our model can be retrained according to the
updated training set at any time without consuming too much time (20 epochs
take only a few seconds). In other words, our approach can add new applications
to the training set and optimize our model by retraining.

Table 5. Results with network model without dropout

Malware/Benign = 1 : 1 Train : Test = 3400 : 600, Epochs = 20

[500] 97.83 98.33 97.67 98 99.167 98.5 97 98.33 97.5 98

[1000, 100] 99 99.167 98.83 98.83 99 99.167 99.167 98.83 99.33 98.5

[1000, 500, 100] 99 98.67 98 98.83 98.33 99 99.167 98.67 99 98.83

[1000, 600, 200, 50] 96.83 98.67 96.83 99.33 98.5 97.34 98.67 97.83 98.67 98.67



214 Y. Jin et al.

Table 6. Results with different network model

Malware/Benign = 1 : 1, Train : Test = 3400 : 600, Epochs = 20

[500] 99.67 99.33 99.17 99.5 99.5 99.167 99.83 99.17 99.33 99.33

[1000, 100] 99.17 99.67 99.5 99.5 98.83 99.67 99.5 99.5 99.33 99.33

[1000, 500, 100] 99.5 99.33 99.67 99.5 99.5 99.5 99.5 99.67 99 99.33

[1000, 600, 200, 50] 99.5 99 98.67 98.83 99.167 99.33 98.5 98.5 98.67 99.5

Table 7. Results with different network model

Malware/Benign = 1 : 1, Train : Test = 3000 : 1000, Epochs = 20

[500] 99.30 99.30 99.40 99.40 99.50 99.20 99.40 99.40 99.30 99.30

[1000, 100] 99.30 99.50 99.30 99.40 99.50 99.50 99.60 99.40 99.10 99.30

[1000, 500, 100] 99.40 99.40 99.40 99.30 99.60 99.30 99.10 99.20 99.50 99.60

[1000, 600, 200, 50] 99.2 98.5 99 98.7 98.9 99.20 99.40 99 98.40 99.10

(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

Fig. 4. Iteration-accuracy at first epoch (Malware/Benign = 1 : 1 , Train : Test = 3400
: 600)



Effective Android Malware Detection Based on Deep Learning 215

Table 8. Results with different network model

Malware/Benign = 1 : 2, Train : Test = 2550 : 600, Epochs = 20

[500] 99.33 99 99 99.167 99 98.33 98.83 99.5 99.167 98.67

[1000, 100] 99.33 98.83 99.5 99.83 99.5 99.33 99.67 99.167 99.5 99.33

[1000, 500, 100] 99.67 99.5 99.67 99.167 99.5 99.5 99.5 99.33 99 99.5

[1000, 600, 200, 50] 99 99 99.167 97.83 98.67 98.67 99 99.167 99.167 98.83

Table 9. Results with different network model

Malware/Benign = 1 : 5, Train : Test = 2040 : 600, Epochs = 20

[500] 98.83 98 98 98.83 99 99 99.33 98.5 97.83 98.33

[1000, 100] 99.5 99.5 99.5 99.33 99 98.33 99.167 98.83 99.33 99.33

[1000, 500, 100] 99.33 99.5 99.5 98.83 99.67 99.67 99.5 99.5 99.167 99.167

[1000, 600, 200, 50] 99.167 98.83 97.83 99.33 99.167 99.33 98.33 99 99.33 98.83

5 Conclusion

In this paper, we use DNN to train feature vectors composed of 1092 sensitive
APIs to achieve the purpose of detecting android malwares. Compared with
other papers, we did not adopt very complex features, but selected more direct
API calls as features. The only difference is that we have expanded the list of
sensitive APIs, which gives our method an average accuracy of over 98.5%. To
summarize, our approach has the following advantages and disadvantages.

5.1 Advantages

– Features are simple: All the features can be extracted by reading the smali
code once.

– Less time consuming: Both feature extraction and model training take
very short time. It only takes several iterations for the model from initial
training to stable accuracy.

– Easy to maintain: After being put into use in the future, applications can
be collected to expand training set, which ensures the feasibility of retraining
model at low consumption.

5.2 Disadvantages

– Being attacked: Static features are easily disguised to allow malwares to
evade detection.

– Exceptional case: When the proportion of positive and negative examples
in training concentration is too large, the accuracy of the model decreases.

– Behavioral uncertainty: Unable to determine the specific malicious
behavior.



216 Y. Jin et al.

In general, our approach is satisfactory from the experiment. Aiming at the
first disadvantage, our future research direction is to introduce dynamic features
to identify malwares after disguising. In addition, the third disadvantage is com-
mon to all current deep learning based approaches. To address this shortcoming,
we have two ideas that may be implemented in the future. The first, combined
with dynamic analysis, is to obtain specific malicious behavior based on the calls
of sensitive apis in dynamic analysis. The second is to turn a binary task into
a multi-categorization task, which classifies malwares into malicious behaviors,
which requires more complex datasets. Finally, we think that our results help to
promote the development of the android security.

Acknowledgment. This work was supported by the CETC Joint Advanced Research
Foundation (No. 6141B08020101).

1 Appendix. Part of our list

Table 10 lists part of the sensitive apis that we use.

Table 10. Part of our sensitive API list

1 android/media/MediaPlayer;->create

2 android/graphics/Picture;-><init>

3 android/os/Handler;->dispatchMessage

4 android/media/MediaPlayer;->prepare

5 android/media/MediaPlayer;->reset

6 android/os/Looper;->loop

7 android/media/Ringtone;->setStreamType

8 android/webkit/WebView;->capturePicture

9 android/webkit/WebView;->destroy

10 android/view/accessibility/AccessibilityNodeInfo;->getChild

11 android/view/accessibility/AccessibilityNodeInfo;->focusSearch

12 android/view/accessibility/AccessibilityRecord;->getSource

13 android/view/accessibility/AccessibilityNodeInfo;->findFocus

14 android/view/accessibility/AccessibilityNodeInfo;->findAccessibilityNodeInfosByText

15 android/view/accessibility/AccessibilityNodeInfo;->performAction

16 android/view/accessibility/AccessibilityNodeInfo;->getParent

17 junit/framework/TestResult;->endTest

18 com/android/internal/telephony/gsm/SmsMessage;->getSubmitPdu

19 com/android/internal/telephony/gsm/SmsMessage;->calculateLength

20 com/android/internal/telephony/cdma/sms/BearerData;->calcTextEncodingDetails

21 android/view/View;->addFocusables

22 android/webkit/WebView;->reload

(continued)



Effective Android Malware Detection Based on Deep Learning 217

Table 10. (continued)

23 android/webkit/WebView;->stopLoading

24 android/webkit/WebView;->canGoBack

25 android/widget/AbsListView$LayoutParams;-><init>

26 android/webkit/WebView;->goBack

27 android/webkit/WebView;->canGoForward

28 android/webkit/WebView;->goForward

29 android/webkit/WebView;->saveState

30 android/webkit/WebView;->loadData

31 android/webkit/WebView;->loadDataWithBaseURL

32 android/view/View;->focusSearch

33 android/webkit/WebView;->postUrl

34 android/webkit/WebView;->restoreState

35 android/webkit/WebView;->loadUrl

36 android/webkit/WebView;->getProgress

37 android/webkit/WebView;->pauseTimers

38 android/webkit/WebView;->resumeTimers

39 android/webkit/WebView;->getTitle

40 android/widget/AbsoluteLayout$LayoutParams;-><init>

References

1. Smartphone, O.: Market share, 2015 q2 (2016). IDC [on-line].[dostkep 22.08. 2015].
Dostkepny w: http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2. Wood, P., Nahorney, B., Chandrasekar, K., Wallace, S., Haley, K.: Internet security
threat report 2015. Symantec, California (2015)

3. Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime pri-
vacy monitoring on smartphones. Acm Trans. Comput. Syst. 32(2), 1–29 (2014)

4. Hornyack, P., Han, S., Jung, J., Schechter, S.E., Wetherall, D.: These aren’t the
droids you’re looking for: retrofitting android to protect data from imperious appli-
cations. In: Acm Conference on Computer & Communications Security (2011)

5. Su, X., Zhang, D., Li, W., Zhao, K.: A deep learning approach to android malware
feature learning and detection. In: IEEE Trustcom/BigDataSE/ISPA, vol. 2016,
pp. 244–251. IEEE (2016)

6. Wang, Z., Cai, J., Cheng, S., Li, W.: Droiddeeplearner: identifying android malware
using deep learning. In: IEEE 37th Sarnoff Symposium, vol. 2016, pp. 160–165.
IEEE (2016)

7. Hou, S., Saas, A., Ye, Y., Chen, L.: DroidDelver: an android malware detection
system using deep belief network based on API call blocks. In: Song, S., Tong, Y.
(eds.) WAIM 2016. LNCS, vol. 9998, pp. 54–66. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47121-1 5

8. Ganesh, M., Pednekar, P., Prabhuswamy, P., Nair, D.S., Park, Y., Jeon, H.: CNN-
based android malware detection. In: 2017 International Conference on Software
Security and Assurance (ICSSA), pp. 60–65. IEEE (2017)

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://doi.org/10.1007/978-3-319-47121-1_5
https://doi.org/10.1007/978-3-319-47121-1_5


218 Y. Jin et al.

9. McLaughlin, N., et al.: Deep android malware detection. In: Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy, pp.
301–308. ACM (2017)

10. Nix, R., Zhang, J.: Classification of android apps and malware using deep neural
networks. In: International joint conference on neural networks (IJCNN), 2017, pp.
1871–1878. IEEE (2017)

11. Li, D., Wang, Z., Xue, Y.: Fine-grained android malware detection based on deep
learning. In: 2018 IEEE Conference on Communications and Network Security
(CNS). IEEE, pp. 1–2 (2018)

12. Martinelli, F., Marulli, F., Mercaldo, F.: Evaluating convolutional neural network
for effective mobile malware detection. Procedia Comput. Sci. 112, 2372–2381
(2017)

13. Hou, S., Saas, A., Chen, L., Ye, Y.: Deep4maldroid: a deep learning frame-
work for android malware detection based on linux kernel system call graphs. In:
2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW), pp. 104–111. IEEE (2016)

14. Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-sec: deep learning in android malware
detection. In: ACM SIGCOMM Computer Communication Review, vol. 44, no. 4,
pp. 371–372. ACM (2014)

15. Xu, L., Zhang, D., Jayasena, N., Cavazos, J.: HADM: hybrid analysis for detec-
tion of malware. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS,
vol. 16, pp. 702–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
56991-8 51

16. Vinayakumar, R., Soman, K., Poornachandran, P., Sachin Kumar, S.: Detecting
android malware using long short-term memory (Lstm). J. Intel. Fuzzy Syst. 34(3),
1277–1288 (2018)

17. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-
mission specification. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 217–228. ACM, 2012

18. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors (2012).
arXiv preprint arXiv:1207.0580

19. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
Drebin: effective and explainable detection of android malware in your pocket. In:
Ndss, vol. 14, pp. 23–26 (2014)

20. Michael, S., Florian, E., Thomas, S., Felix, C.F., Hoffmann, J.: Mobilesandbox:
looking deeper into android applications. In: Proceedings of the 28th International
ACM Symposium on Applied Computing (SAC) (2013)

21. Naway, A., Li, Y.: A review on the use of deep learning in android malware detec-
tion (2018). arXiv preprint arXiv:1812.10360

https://doi.org/10.1007/978-3-319-56991-8_51
https://doi.org/10.1007/978-3-319-56991-8_51
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1812.10360

	Effective Android Malware Detection Based on Deep Learning
	1 Introduction
	2 Related Work
	2.1 Static-Feature Detection
	2.2 Dynamic-Feature Detection
	2.3 Hybrid-Feature Detection

	3 Our Method Description
	3.1 Feature Extraction
	3.2 Sensitive API List
	3.3 Training DNN Model
	3.4 Dropout

	4 Experiment Result and Evaluation
	4.1 Application Dataset
	4.2 Sensitive API List
	4.3 Runtime Environment
	4.4 Experimental Results Under Different Parameters

	5 Conclusion
	5.1 Advantages
	5.2 Disadvantages

	References




