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Abstract Along with the development of big data and artificial intelligence, high-
performance heterogeneous parallel computing technology has received more and
more attention from the industry. On the one hand, heterogeneous computing can
significantly improve the computational efficiency. But on the other hand, it can also
make the programming more difficult. Such bottlenecks make it harder to give full
play to the advantages of heterogeneous hardware. There is currently no compre-
hensive solution to meet the efficient task scheduling requirements of heterogeneous
computing systems. Therefore, this paper introduces a task parallel programming
framework based on heterogeneous computing, including the design of program-
mingmodel, adjusting task granularity, and task scheduling. A ST-HEFT-based static
task scheduling method for heterogeneous computing system is proposed to improve
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computing efficiency. Simulation results show that the framework can obtain better
average acceleration ratio. The difficulty of parallel programs for developers can
be reduced, and the varying capabilities of heterogeneous components can be fully
utilized.

Keywords Heterogeneous computing · Programming model · Task granularity ·
Task scheduling · DAG

1 Introduction

With the development of information technology, computing platforms such as data
and graphics processors have promoted the rapid development of artificial intelli-
gence technology represented by deep neural networks. The heterogeneous hardware
such as GPU, FPGA, and CPU shows different advantages on computing capability
and power consumption, which can support various specific application domains.
However, the heterogeneous computing components are not fully utilized to support
these various artificial intelligence applications. In addition, from the perspective
of historical development, the development of software framework lags far behind
the development of hardware. The lack of efficient task scheduling software might
limit the application scenarios of heterogeneous hardware, which can also reduce the
efficiency and flexibility of the heterogeneous computing system.

The most prominent research direction of heterogeneous computing [1] in the
field of high-performance computing includes GPU-based heterogeneous computing
technology represented byNvidia, AMD/ATI, and FPGA-based reconfigurable com-
puting technology. Most high-performance computing systems today rely on GPU
to achieve ultra-high performance. FPGA [2] has high customizable performance
and low power consumption, while GPU has a large amount of parallel execution
resources and high storage bandwidth. The computational acceleration through the
heterogeneous computing acceleration components can often achieve better process-
ing performance than the traditional CPU processing platform. Due to the various
performance, cost, and complexity of CPU, GPU, and FPGA, there will be a task
scheduling optimal problem to design a mapping approach of heterogeneous com-
ponents to obtain a combination of programmability, execution performance, design
overhead, and power consumption. Therefore, this paper provides a programming
framework as a media between developers and various parallel computing devices.

We present a heterogeneous computing model framework as Fig. 1 to enhance the
flexibly of heterogeneous system. It elaborates on several aspects of hardware and
software programming model, adjustment of task granularity, and task scheduling.
PyOpenCL [3] is used to divide the tasks into DAG model. A ST-HEFT-based task
scheduling method for heterogeneous system is proposed to improve computing
efficiency. The contribution of the paper is threefold.
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Fig. 1 Heterogeneous computing model framework

1.1 Design Hardware and Software Programming Model

We present a hardware cost model to evaluate the performance of operation results
under different hardware architectures, which is designed with reference to litera-
ture [4, 5]. The operating effect can be evaluated before the process actually runs.
Based on the hardware cost model, some special parallel models have been provided,
such as MapReduce, Fork-Join [6]. In order to fully demonstrate the superiority of
heterogeneous hardware systems, a directed acyclic graph (DAG) software program-
ming model with task partitioning and task synchronization is proposed based on
PyOpenCL [7]. Tasks can be divided into fine granular subtasks efficiently, which can
be calculated by the kernel actually running or evaluated by the hardware cost model.
Then, the task scheduling problems can be transformed into the model optimization
of the DAG graph.

1.2 Design a Task Granularity Adjustment Algorithm

Since the DAG model optimization is a typical NP problem [8], which is very com-
plicated and needs a long running time. This paper introduces a scheme of node com-
bination for the DAG graph. Through the aggregation of multiple nodes reasonably,
the complexity of the task scheduling algorithm can be reduced and the schedul-
ing performance can be improved. The mapping between tasks and heterogeneous
computing components can be solved much easier.
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1.3 Design a Task Scheduling Algorithm

To solve the task scheduling problem, heuristic table task scheduling algorithms, such
as HEFT and CPOP [9], and task scheduling algorithms based on random search,
such as genetic algorithm [10, 11] and simulated annealing algorithm [12], have
been introduced. But the impact of heterogeneous hardware has not been considered
enough. In this paper, a task scheduling algorithm for heterogeneous systems is
designed to minimize the length of DAG. A new table-driven scheduling algorithm
ST-HEFT based on HEFT is proposed to satisfy high real-time requirements.

2 Programming Model

2.1 Hardware Cost Model

To evaluate the performance of operation results, the computing characters of differ-
ent hardware architectures should be designed. The cost model can be divided into
initialization cost (Tinit), data transmission cost (Ttran), and computing cost (Tcom) as
shown in Fig. 2.

Device initialization cost Tinit refers to the time delay during initialization. When
performing large-scale data computing, the initialization time can often be negligible,
since the data transmission time and the computing time are much larger. The data
transmission cost Ttran depends on two aspects: the size of the data to be transmitted
and the bandwidth of the data transmission. As an example, the transmission aspects
of TITAN-VGPU are shown in Table 1. The time of data transmission can be transfer
size divided by the bandwidth.

Fig. 2 Hardware cost model based on OpenCL
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Table 1 TITAN V
bandwidth data

Direction Transfer size (bytes) Bandwidth (MB/s)

Host to device 33,554,432 4582.0

Device to host 33,554,432 4241.4

Device to device 33,554,432 463,571.1

And according to the transmission direction of data between host and device,
Ttran is divided into two parts: T tran_in and T tran_out. The device computing cost Tcom
refers to the application runtime on the device, depending on the data computing
time and the memory access time. The actual computing cost of the device can be
evaluated by the PyOpenCL execution model kernel runtime, which can be obtained
by the PyOpenCL API. The OpenCL API can provide the correct way to test kernel
execution time. Through the hardware model, we can evaluate the computing and
transmission overhead of different hardware before the task actually runs, which can
be used to build the software programming model.

2.2 Software Programming Model

Different computing devices in heterogeneous computing systems usually undertake
different computing tasks. Although there are dependencies between devices,most of
the boundary of computing can be very clear. Therefore, the task-level programming
model is more suitable to represent the heterogeneous computing systems, and a
graph-based parallel programming structure can be very useful for reducing the
complexity of parallel programs.

The basic idea of the parallel mode adopted in this paper is to divide large tasks
into small tasks and then aggregate the small tasks reasonably to get the results. Each
application subtask runs on PyOpenCL. PyOpenCL is a Python package of OpenCL
that provides various OpenCL interfaces in Python through a library of functions.
PyOpenCL greatly simplifies the call to OpenCL and improves programming effi-
ciency. Using the PyOpenCL structure, we can get the transformation overhead by
the transformation bandwidth, and the computing overhead can be obtained by the
OpenCL kernel’s running time. Then, a directed acyclic graph (DAG) software pro-
gramming model with task partitioning and task synchronization can be proposed.
The communication and computing cost, and the relationship between each task for
heterogenous hardware can be represented by DAG.

The DAG task graph is represented byG = (V, E, P, D, B, T ), and V represents
the task nodes set (V = {v1, v2, v3, v4, . . .}), |V | represents the number of task
nodes, in the figure below, |V | = 10. E represents the edge set (E = {ei, j |ei, j =〈
vi , v j

〉
, ei, j ∈ V × V }), ei, j means node vi to v j has dependency. P represents the

hardware devices set (P = {p1, p2, p3, . . .}), |P| represents the kinds of devices.
D represents the transfer data size set (D = {di, j |ei, j ∈ E}). B represents the
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Table 2 Computation data
size of task graph in Fig. 3 [9]

Node p1 p2 p3

v1 14 16 9

v2 13 19 18

v3 11 13 19

v4 13 8 17

v5 12 13 10

v6 13 16 9

v7 7 15 11

v8 5 11 14

v9 18 12 20

v10 21 7 16

bandwidth set (B = {bi, j |bi, j ∈ P × P}). T represents the computation cost set
(T = {

ti, j
∣∣vi ∈ V, p j ∈ P, ti, j

〉
0
}
).

In a heterogeneous environment, the computation cost of the different devices
(p1, p2, and p3) for each task node is shown in Table 2. The p1, p2, and p3 represent
various hardware processors, such as p1 as CPU, p2 as Titan V GPU, and p3 as
T4 GPU. The edge weight represents the communication cost of the two tasks. The
communication cost set can be (C = {ci, j |ei, j ∈ E}). ci, j , which is for transferring
data from task vi (scheduled on pm) to task v j (scheduled on pn), can be defined by:

ci, j = di, j/bm,n (1)

As mentioned above, the problem of task scheduling can be transferred to find the
nearest and simplest schedule path for theDAGdiagram. In order to directly show the
differences between theHEFT algorithm in literature [9] and the proposed algorithm,
an example of the DAG task graph which shown in Fig. 3 and the computation cost
table which shown in Table 2 in literature [9] will be still used in this paper.

Through the hardwaremodel and the softwaremodel, the tasks can be divided into
DAGmodels, which can be used to reflect the computing and transmission overhead
for the tasks through various hardware. The algorithm expresses the task with the
directed acyclic graph DAG by analyzing the task execution characteristics. So, the
research on the task parallel programming can be transformed into the research of
the DAG graph.

3 Adjust Task Granularity

Although therewere some automatic task divisionmethods elaborated [13], the entire
DAG diagram was traversed every time, which increases the difficulty of shortest
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Fig. 3 A sample task graph DAG with 10 tasks [9]

path seeking. At the same time, the optimization of shortest path seeking is a typical
NP problem. The complexity of the task scheduling is almost very high.

This paper designs a code adaptive partitioning algorithm based on DAG graph to
reduce the complexity and improve the performance of the task scheduling algorithm.
A scheme of node combination in the DAG graph is proposed to reduce the numbers
of DAGnodes and connections, so that it can effectively reduce the computing cost to
find the shortest path of DAGmodel. The mapping between tasks and heterogeneous
computing components can be executed easily.

3.1 Algorithm Description

The major steps in proposed task granularity algorithm will be proposed as follows:
Step 1: Copy. If the node v0 is the entry node, it will be copied and merged with

its all successor nodes to increase the scheduling efficiency.
Step 2: Sort. The ordering of this algorithm is based on the priority according

to Eq. (3) and the dependencies of all nodes in the graph. in(vi ) is the maximum
schedule length from the entry node to the vi , and out(vi ) is the maximum schedule
length from the node vi to the exit node. The nodeswith one precursor node are placed
in the to-be-combined set T P , and the nodes in the graph are sorted topologically
according to the priority PRIOR( vi ).

T (vi ) = maxp j∈P
{
ti, j

}
(2)
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PRIOR (vi ) = in(vi ) + out(vi ) + T (vi ) (3)

Step 3: Merge. How to choose the appropriate node to merge is the key problem
to the division work. To increase the efficiency of partitioning, algorithm must also
consider the nodes on non-critical paths. The node vi with the highest priority will
be taken off from the TP.

If it only has one direct precursor node v j , v j ∈ Vpre(vi ), and the node v j also
has only one direct successor node vi , the node vi is a candidate point which can be
incorporated with v j .

If it has one direct precursor node v j and the node v j has more than one direct
successor nodes vk , vk ∈ Vsucc

(
v j

)
. Then if Eq. (4) can be satisfied, the node v j will

be merged with the node vi .

PRIOR(vi ) ≥ max{PRIOR(vk) + T (vi )}
(
vk ∈ Vsucc

(
v j

)
, k �= i

)
(4)

And the priority of all the direct/indirect successor nodes and precursor nodes of
v j should be updated as Eq. (3).

Otherwise, the next node with the second-highest priority is taken off. If there is
no node in TP, the operation will be terminated.

3.2 Algorithm Results

Using the task granularity algorithm, the DAG as Fig. 3 can be transferred to Fig. 4.
From Fig. 4, the number of nodes can be reduced to eight. It shows that the algorithm
can avoid repeating the traversal of the DAGmap and can adaptively select the appro-
priate nodes for the merge operation. The algorithm aims to reduce the complexity of
the algorithm and improve the performance of the task scheduling algorithm, which
is superior to similar algorithms.

Fig. 4 Results of code
adaptive partitioning
algorithm
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4 Task Scheduling

Task scheduling is the key point of the task parallel programming framework. The
task scheduling problem is NP-complete in general case; it is often difficult to obtain
the optimal solution, especially in the computing environment on heterogeneous
processors.At the same time, it challenges the complex of task scheduling. Therefore,
it is of great significance to study and design low-complexity and high-performance
task scheduling algorithms. At present, many researchers have proposed solutions for
task scheduling problems [14–17], including genetic algorithm, simulated annealing
algorithm, and the table-driven scheduling algorithm. The task scheduling algorithms
based on genetic algorithm and simulated annealing algorithm aremore complex, and
the running time is much longer than the heuristic table-driven scheduling algorithm.
Therefore, the heuristic table-driven scheduling algorithm is more suitable for the
systemwith high real-time requirements. In literature [18], an IFEFTalgorithmwhich
is based on HEFT algorithm is proposed. However, the algorithm does not consider
the influence of transmission rate between different devices. The ST-HEFT algorithm
not only considers the influence of the transmission rate between devices, but also
activates the communication costs of the predecessor nodes and the successor nodes
to avoid repeatedly calculating.

4.1 Algorithm Description

The table-driven scheduling algorithm can be divided into two key steps: task sort-
ing and task mapping. After the task priority queue is established according to the
algorithm, the tasks in the queue can be, respectively, scheduled.

The earliest start time EST
(
vi , p j

)
and the earliest completion time EFT

(
vi , p j

)

of task node vi on device p j will be defined as follows [9]:

EFT
(
v0, p j

) = 0 (5)

EST
(
vi , p j

) = max
(
avail

[
p j

]
,max

(
AFT(vk) + ck,i

))(
vk ∈ Vpre(vi )

)
(6)

EFT
(
vi , p j

) = EST
(
vi , p j

) + ti, j (7)

avail
[
p j

]
represents the available time of device p j , AFT(vk) represents the actual

end time of task vk . Vpre(vi ) is the direct precursor tasks of task node vi .
Then, the task scheduling problems will be trying to find the shortest length of

the DAG model Makespan = max{AFT(vexit)}.
So, the table-driven scheduling algorithm can be as follows:
Step 1: Sort. cPC(vi ) represents the maximum communication cost between vi and

the direct precursor task vm . cSC(vi ) represents the maximum communication cost
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between the task vi and the direct successor task vn . Here, we increase the ratio of the
maximum communication value of the precursor node to the total communication
value (10) and activate it by the step function (11). And according to Eq. (12), the
wtotal value of task vi on each device p j is calculated. Rank(vi ) represents the average
of the wtotal

(
vi , p j

)
computed by task vi on all devices. All tasks in the task queue

will be sorted in descending order of rank(vi ).

cPC(vi ) = max
{
ci,m

} (
vm ∈ vpre(vi )

)
(8)

cSC(vi ) = max
{
ci,n

}
(vn ∈ vsucc(vi )) (9)

u = cPC(vi )/(cPC(vi ) + cSC(vi )) (10)

r =
{
0, u < 0.5
1, u ≥ 0.5

(11)

wtotal
(
vi , p j

) = r × cPC(vi ) + (1 − r) × cSC(vi )

+ max
{
wtotal

(
vk, p j

) + ti, j
}
(vk ∈ vsucc(vi )) (12)

Rank(vi ) = 1

|P| ×
∑

p j

wtotal
(
vi , p j

)
(13)

Step 2: Task mapping. Every time select the task at the head of the task queue.
Then according to Eq. (14), define the maximum communication cost LH between
task vi and the exit task on each device. And allocate the task to the device with the
minimal product ST of earliest completion time EFT and the longest communication
cost LH.

LH
(
vi , p j

) =
{
wtotal

(
vi , p j

) − ti, j − cPC(vi ), r = 0

wtotal
(
vi , p j

) − ti, j , r > 0
(14)

ST(vi ) = min
{
EFT

(
vi , p j

) × LH
(
vi , p j

)}
(15)

4.2 Algorithm Results

As an illustration, Fig. 5b presents the schedules obtained by the IFEFT algorithm
and simulated annealing (SA) algorithm for the sample DAG of Fig. 3. The simulated
annealing algorithm determines a solution by random search and then tries to jump
out of the local optimal solution to find the approximate optimal solution. The SA
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Fig. 5 Scheduling of task graph in Fig. 4 with HEFT, IFEFT, SA, and ST-HEFT algorithms

algorithm is added to the test, which in order to compare the result of heuristic table
schedule with random search schedule.

Figure 5c presents the schedules obtained by the ST-HEFT algorithm for the
sampleDAGof Fig. 3. And since the ST-HEFT algorithm is based on task replication,
task v1 is copied to device p1 and device p2, and task v2 is copied to device p2 thereby
eliminating communication time. The schedule length, which is equal to 69, is shorter
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than the schedule length of HEFT algorithm which uses average transmission rate
shown in Fig. 5a.

The complexity of ST-HEFT algorithm is only O
(|E |2 × |P|), which is the same

as HEFT algorithm, but SA is O(|E | × a × b × log(−α)). a, b are the number of
outer loops and inner loops of the SAalgorithm, respectively;α is temperature change
rate of the SA algorithm (α < 1). So, table schedule algorithm is more suitable for
systems with static task-scheduling requirements.

4.3 Performance Test Experiments

In this section, we present the comparative evaluation of ST-HEFT algorithm and
HEFTalgorithm.And the randomsearch algorithm (simulated annealing experiment)
is added to the performance test, which in order to compare the performance of
heuristic table schedule with random search schedule. For this purpose, comparison
metric is defined firstly, and we randomly generated application graphs to test these
algorithms.

Finally, we can get the results of each algorithm by doing three following sets of
experiments.

4.3.1 Comparison Metric

The performance comparisons of the algorithm are based on the metric [18]:

speedup = min
{∑

vi∈V
wi, j

}/
Makespan (16)

Numerator min
{∑

vi∈V wi, j
}
is the sequential execution time which is computed

by assigning all tasks to a single processor that minimizes the cumulative of the
computation costs. According to Eq. (16), the larger the speedup, the better the
performance of the algorithm.

4.3.2 Randomly Generate DAG Graph

In order to randomly generate DAG graph and computation cost, some parameters
are needed to set.

1. The number of tasks in the DAG graph (|V |).
2. Communication to computation ratio (CCR). It represents the ratio of the average

communication cost to the average computation cost.
3. The number of devices (|P|).
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In each experiment, the values of DAG parameters are assigned from the
corresponding sets given below:

• SET|V | = {20, 40, 60, 80, 100}.
• SETCCR = {0.1, 0.3, 0.5, 1.0, 2.0}.
• SET|P| = {2, 4, 6, 8, 10}.

Then, in each set of experiments, we randomly generate 50 DAG graphs for each
parameter and take the average of fifty results.

4.3.3 Performance Results

Experiment 1: Firstly, the impact of the number of DAG nodes on each algorithm
is tested. In this experiment, the performances of the algorithms are compared with
respect to various graph sizes (see Fig. 6). The average calculation time of each DAG
model is 40, and the average communication time is 32 which is 80% of the average
calculation time (CCR = 0.8), the number of devices is 5 (|P| = 5).

According to the experimental results shown in Fig. 6, the average speedup of
ST-HEFT is 4% higher than HEFT algorithm and 17% higher than SA algorithm.

Experiment 2: the impact of the number of devices on each algorithm is tested.
In this experiment, the number of DAG nodes is 20 (|V | = 20), CCR = 0.8.

According to the experimental results shown in Fig. 7, the average accelera-
tion ratio of ST-HEFT is 4% higher than HEFT algorithm and 9% higher than SA
algorithm.
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Fig. 6 Performance test for the number of DAG nodes
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Fig. 7 Performance test for the number of devices

Experiment 3: the impact of the communication to computation ratio on each
algorithm is tested. In this experiment, the number of DAG nodes is 20 (|V | = 20),
the number of devices is 5 (|P| = 5).

According to the experimental results shown in Fig. 8, the average accelera-
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Fig. 8 Performance test for CCR
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tion ratio of ST-HEFT is 6% higher than HEFT algorithm and 9% higher than SA
algorithm.

Combined with the above three experiments, we can get: The experimental results
show that the average performance of the ST-HEFT algorithm is better than that of
the HEFT algorithm. And the performance of the heuristic table schedule algorithm
is better than the performance of the simulated annealing algorithm.

5 Conclusion

In this paper, we propose a task parallel programming framework to improve the
efficiency of heterogeneous computing. Through the design of programming model,
task granularity adjustment, and task scheduling, a more efficient and flexible task
scheduling framework is provided. We present a hardware and software cost model
to divide the tasks into a DAG model. Then, a task granularity adjustment method
is introduced to reduce the complexity of the task scheduling. A new table-driven
scheduling algorithmbased onST-HEFT is proposed to satisfy high real-time require-
ments for heterogeneous systems. Simulation tests show that theST-HEFTcan reduce
the scheduling length and improve the average speedup obviously. The proposed
algorithm can obtain a better average performance. It shows that the framework can
reduce the development threshold of parallel computing programs for developers
and maximize the utilization of the capabilities of various computing devices in
heterogeneous computing platforms.
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