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Towards Energy-Aware Caching for Intelligent
Connected Vehicles

Hongjia Wu, Jiao Zhang, Zhiping Cai*, Fang Liu*, Yangyang Li and Anfeng Liu

Abstract—With the widespread application of infotainment
services in intelligent connected vehicles (ICV), network traffic
has grown exponentially, bringing huge burden and energy
consumption to ICV network. Edge caching, which enables edges
(e.g., vehicles or roadside units) with cache storages, is a promis-
ing technology to alleviate this problem. In this paper, in terms
of the hybrid communication mode of vehicle to vehicle (V2V)
and vehicle to roadside unit (V2R), an energy aware caching
scheme for infotainment services is proposed. Considering the
geographical distribution of vehicles and roadside units as well
as the size of transmission content, the energy consumption model
in ICV network is formulated to implement the optimal selection
of cache nodes. Then the selection of cache node in ICV network
is transformed into the optimal stopping problem and solved by
the optimal stopping theory. Finally, we propose a new algorithm
for optimal energy efficiency cache node selection (OEECS).
Simulation results show that the proposed OEECS can obtain
higher energy saving and lower average access latency than other
baseline schemes.

Index Terms—Intelligent connected vehicles, infotainment ser-
vices, edge caching, energy consumption, optimal stopping theory.

I. INTRODUCTION

W ITH the rapid development of the Internet of things
(IoT) [1], [2] and artificial intelligence (AI) tech-

nologies [3], the intelligent connected vehicles (ICV) [4]
are emerging and gaining enormous popularity. Gartner has
predicted [5] that by 2020, in order to transmit and share
information, around one in five vehicles (i.e., more than
250 million) on the road will be globally connected to the
Internet. The resulting large-scale data generation challenges
the performance of ICV network, which may lead to more
energy consumption and affect the experience of ICV users [6].
A promising approach is to use edge caching [7], [8] to react
to these challenges in vehicle networks. The cache service
model of ICV can receive the inspiration from the mobile
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edge computing (MEC) architecture [9]–[12] to cache content
at the edge of the network, so as to provide better services for
vehicle users.

Nowadays, some caching schemes adopt mobility predic-
tion [13]–[15] and cooperative caching [16], [17] to reduce
network latency and increase network throughput. The others
use additional tools [18], [19], such as caching assistants or
unmanned aerial vehicle (UAV) to improve the quality of ser-
vice (QoS), but with additional overhead. The utilization of the
above caching methods mainly focus on the improvement of
latency for security applications [20]. They can speed up users’
access to real-time information about road conditions and
route navigation, thereby reducing congestion and accidents.
However, with the enrichment of people’s requirement, the
infotainment services [21] in ICV are getting more attention.
The emerging services can provide a variety of entertainment
and leisure information services, such as video, news, tourist
attractions query and more, aiming to improve users’ travel
convenience and experience. Due to the high popularity of
infotainment services in ICV, it will be frequently requested,
which leads to the increase of network traffic and huge energy
consumption. Moreover, due to the mobility of vehicles, the
network cannot guarantee the stable transmission of infotain-
ment with low energy consumption. In addition, driven by the
construction of green networks, electric vehicles are becoming
more and more popular, which enables the energy consumption
problem in ICV networks more prominent and cannot be
ignored [22]. In view of the above problems, the design of
an energy efficient dynamic caching scheme for infotainment
services is of great significance in ICV network.

In this work, we focus on energy saving in ICV network.
An energy aware caching scheme for ICV is proposed, aiming
to optimize energy consumption while guaranteeing the user
quality of service. The main contributions of this paper are as
follows:

• From the perspective of vehicle users, a cache integration
framework considering end-edge-cloud collaboration is
proposed.

• According to the optimal stopping theory, we transform
the dynamic cache node selection problem into an optimal
stopping problem, which takes the mobility of nodes and
the network energy consumption into account.

• Considering the limited energy, an optimal energy ef-
ficient cache node selection algorithm for infotainment
services is proposed, which is capable of improving the
energy conservation of ICV network.

The remainder of this paper is organized as follows: In
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Section II, we introduce the application of caching in ICV
network. We construct an energy consumption model in Sec-
tion III. To minimize the energy consumption of the system,
an energy aware caching scheme is proposed in Section IV.
In Section V, we present and analyze simulation results. We
finally conclude the paper in Section VI.

II. RELATED WORKS

Nowadays, the existing works in caching are focused on
hops [23]–[25], mobility prediction [13]–[15], roadside units
(RSU) [26]–[28], cooperative caching [16], [17] and auxil-
iary [18], [19]. The most representative caching strategy was
Leave Copy Down (LCD) [23], which has the simple idea of
selecting the next hop of the content source as the cache place-
ment point. The authors in [24] proposed a Random cache
placement algorithm. The Random strategy was improved on
the basis of LCD, realizing random equal probability selection.
Psaras et al. proposed a Probcache strategy [25], where the
cache nodes were selected with weighted probabilities. In
this case, the nodes closer to the users are more likely
to become cache placement points. Based on these classic
caching ideas, new caching strategies are constantly being
proposed. Mahmood et al. [13] proposed a mobility-aware
probabilistic caching scheme by predicting the probability for
content required at each edge node. They studied how to
efficiently stream data to connected vehicles on roads covered
by edge nodes. The authors [14] proposed a non-cooperative
caching scheme which used the user mobility pattern and daily
demand to minimize the total network latency. Considering
the mobility of vehicles, Tan et al. [15] designed resource
allocation strategies to improve the performance and cost-
effectiveness of vehicle networks.

Since, the prediction of mobility faces much uncertainty,
and the stability of performance can be improved by selecting
RSU as edge caching node. The authors [26] solved the files
allocation problem in three algorithms, such as the optimal,
sub-optimal, and greedy methods respectively. They addressed
the content delivery problem by caching popular files with
large storage capacity in RSUs, while ignoring the number and
limited capacity of RSUs. In order to improve the through-
put of vehicle network, a caching scheme was proposed by
Bitaghsir [27], which deployed some storage-capable RSUs
on the street to store the content. Ma et al. [28] proposed a
caching allocation policy which jointly considered the caching
at the vehicular layer and RSU layer, aiming to minimize
average latency while meeting service quality requirements.
However, the above works only consider a single edge caching
node, resulting in a limited amount of cached data, thus the
collaboration of multiple edge caching nodes becomes nec-
essary. Cooperative content caching between moving vehicles
was introduced in [16]. Attia et al. analyzed the performance
of cooperative content caching in vehicular ad hoc networks.
A distributed cooperative caching scheme [17] was proposed,
in which RSUs in an area periodically shared their contents
so as to update their cache locally. In addition, network
performance can be effectively improved by using additional
tools. Abdelhamid et al. [18] proposed a caching scheme called

caching-assisted data delivery, which introduced a lightweight
Road Cache Point as a caching assistant on the road. Chen
et al. [19] proposed a novel cache-enabled UAV framework
in CRANs which effectively deployed cache-enabled UAVs,
aiming to maximize users’ QoS. In [26] and [27], although the
caching aids were employed, the additional device overhead
was ignored.

The above researches mainly consider latency sensitive in-
formation, and focus on the optimization of network latency or
throughput. The characteristics of the related caching strategies
are shown in TABLE I. On one hand, few caching schemes
pay attention to infotainment which has no strict information
requirements for latency. On the other hand, most authors tend
to focus too much on latency and ignore the importance of en-
ergy consumption in the network. Different from these works,
we propose an energy-aware caching scheme for infotainment
services in a V2V and V2R hybrid mode. The goal is to
minimize network energy consumption under the constraint
of maximum latency.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section gives a detailed description of the system
model. We first present the network application scenario of
ICV, and then introduce the network energy consumption
model based on the hybrid communication mode.

V2I communication V2V communication Tunnel communication   Cache  point

Cloud

RSU

RSU

RSU

Fig. 1: The ICV network architecture.

A. Network Scenario
We consider a highway traffic scenario, as shown in Fig. 1.

In the highway, vehicles are assumed to travel in platoon and
RSUs are deployed uniformly along the road with the same
coverage [28]. For this scenario, we propose a cache system
architecture, which consists of three layers: cloud (data center),
edge (RSU nodes), and end (vehicle nodes). Some vehicles
have caching capability (candidate cache node) and the rest
have no caching capability (vehicle users). The candidate
cache nodes can be decided whether to be a cache node by the
vehicle users within its communication range. Each RSU has
a powerful cache server, and the cloud decides whether to use
them as a cache point or not. For vehicles and RSUs, if the
content has been stored, they can be reused. In this paper, the
global positioning system (GPS) is used to precisely measure
the geographic location of vehicles and the content with large
data volume is divided into fine-grained blocks.
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TABLE I: Characteristics of the related caching strategies.

Characteristic Reference Optimization goal Main parameters Constraint
[6] Cache throughput Content service time Network latency
[7] Network latency Cache size No clear constraintsMobility

prediction [8] Network cost Packet size Hard service deadline
[9] Outage performance Time slot Network latencyCooperative

caching [10] Cache hit ratio Cache capacity Movement speed
[11] Network cost Human-centric information

Auxiliary [12] Energy Content popularity
Time solt

Network latency

[16] Average hit distance Cache size No clear constraints
[17] Caching redundancy Cache capacityHops
[18] Hop reduction Node number Network latency

[19] Average downloading time Storage capacity and vehicle speed No clear constraints

[20] Cache hit ratio Vehicle speed and
the number of RSUs Network latencyRoadside units

(RSU) [21] Network latency RSU’s local information Quality of experience

B. Energy Consumption Model

We adopt V2V and V2R hybrid communication mode, and
the nodes access the network through Orthogonal Frequency
Division Multiplexing (OFDM) [29]. The set of vehicle users
and candidate cache nodes is denoted as M = {1, 2...m} and
N = {1, 2...n}, respectively. RSUs use tunnels to communi-
cate with each other.

Let φi(t) be the transmitted signal from user i to user j,
then the received signal at user j can be written as [30]

Sj(t) = aijφi(t) + ωi(t), (1)

where aij is the channel attenuation factor. ωi(t)∼N(0, 1) is
the random white Gaussian noise with mean 0 and variance σ2.
The highest signal to noise ratio (SNR) of the communication
link can be expressed as

f = GT/σ
2, (2)

where GT is the transmitted signal power at node i. Through
the wireless channel transmission, the corresponding power of
received signal at node j can be obtained as

GR = GTa
2
ij = fσ2a2ij, (3)

where aij = λ/di→j . di→j is the distance between node i and
node j and λ is a constant. Thus GR can be further extended
as

GR =
fσ2λ2

d2i→j
. (4)

According to the Shannon-Hartley formula [31], in order to
transmit the cache content, the uplink transmission rate [32],
[33] between nodes can be denoted as

R = Blog2

(
1 +

GTH

σ2

)
, (5)

where B is the bandwidth. H stands for the channel gain
between the nodes.

When the content of c MB file is transferred, the transmitted
energy consumed by node i and the received energy consumed
by node j are respectively defined as

ei =
c

R
GT , (6)

ej =
c

R
GR =

cfσ2λ2

Rd2i→j
. (7)

Combining (6) and (7), we can obtain the total energy
consumption for a content transmission between nodes.

ei→j =
c

R
(GT +GR)

=
c

R
(GT +

fσ2λ2

d2i→j
).

(8)

In conclusion, we find that the energy consumed for com-
munication between nodes is proportional to the size of
the transmitted content. However, the transmission rate and
distance between two nodes have an inversely effect on the
communication energy consumption.

C. Optimal Stopping Theory
The optimal stopping theory is based on the continuous

observation of random variables, and the decision maker
chooses an appropriate moment to take a given behavior with
the goal of maximizing the reward [34]. The optimal stopping
rule problem is defined by the following two types of objects:

(1) Suppose the random variable sequence obeys joint
distribution: X1, X2, · · ·;

(2) Sequence of reward functions can be denoted as:
y0, y1(x1), y1(x1, x2), · · ·, y∞(x1, x2, · · ·).

The associated stopping rules are detailed as [35]: After
observing X1 = x1, X2 = x2, · · ·, Xn = xn (n = 1, 2, · · ·),
the decision maker chooses to stop observing and accepts the
known reward yn(x1, · · ·, xn), or to continue observing Xn+1.
If no satisfied node is observed, the decision maker accepts
the constant y0. This rule enables the decision maker to select
the optimal stopping time n(0 ≤ n ≤ ∞) to maximize the
expected reward E [Yn]. Among them, Yn = yn(x1, · · ·, xn)
is the random reward of stopping at time n.
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D. Problem Transformation
In this paper, we continuously detect the distance between

the first candidate cache node and each vehicle user within its
communication range. Then the energy consumption sequence
of the first candidate cache node is obtained. Next, the vehicle
users continue to detect the second candidate cache node as de-
scribed above. Finally, the energy consumption corresponding
to the second candidate cache node is subtracted from that of
the first one, and the value is compared with the energy saving
expectation solved by the optimal stopping theory. Based on
the comparison results, the vehicle user group determines
whether the second candidate cache node is selected as the
cache node. Follow the above approach until the optimal cache
node is found.

The vehicle users choose the optimal time to stop the
detection based on the continuous observations of energy
consumption sequence. Under the premise of meeting the
maximum latency of the network, the optimal cache placement
point is selected to maximize the energy saving. Therefore,
the cache node selection problem can be transformed into an
optimal stopping problem under the constraint of maximum
latency.

In fact, the vehicle users need to decide whether to continue
the detection based on the current detected energy consump-
tion and the energy saving expectation. If the decision makers
stop the detection, the current candidate cache node is selected
as the cache node, or the opportunity is passed and the next
candidate cache node is detected. This is an optimal stopping
strategy problem, and the corresponding relationship between
this problem and the optimal stopping problem is shown in
Fig. 2.

Decision maker Vehicle user group

Observation

Random variable Distance

Detection

Reward function Energy saving

Take action Selecting

Fig. 2: Optimal stopping elements in cache node selection.

Suppose that the energy consumed by the content trans-
mission constitutes an independent and identically distributed
random variable {Pi→j}. Yn represents the energy saving of
selecting other nodes compared with the first selected node
at random. In order to make the model more realistic, it
is assumed that each real-time detection consumes a certain
amount of energy, which is defined as Pc. So, Yn can be
expressed as

Yn =
m∑
i=1

Pi→1 −
m∑
i=1

Pi→n − nmPc, (9)

where m is the number of detection nodes, and mPc is the
total energy consumed by m nodes in one detection. In the
detection process, when n candidate nodes are detected, the
algorithm’s stopping time is also expressed as n.

Assume that the detection node group is taken as a whole,
Yn can be further expressed as

Yn = m(ei→1 − ei→n)

= m( cR (GT + fσ2λ2

d2i→1
)

− c
R (GT + fσ2λ2

d2i→n
)− nPc)

= m( cfσ
2λ2

R

(
1/d2i→1 − 1/d2i→n

)
− nPc)

= myn,

(10)

where yn represents the energy saving of one detection node

yn =
cfσ2λ2

R

(
1/d2i→1 − 1/d2i→n

)
− nPc

=
cfσ2λ2

R
xn − nPc,

(11)

where xn is denoted as

xn = 1/d2i→1 − 1/d2i→n. (12)

Then, in order to find the optimal stopping time n∗ that
can obtain the best expected reward, we aims to maximize the
expectation of Yn. The energy saving expectation maximiza-
tion problem with maximum latency constraint is described as
follows

max E (Yn)

s.t. n ∈ N,m ∈M
0 ≤ Pc ≤ Pmax, Pi→j > 0

0 < c
R ≤ Tmax

(13)

where, Tmax is the maximum time latency allowed by the net-
work. Pmax is the maximum additional energy consumption
required for detection.

When the maximum energy saving is achieved, the optimal
stopping time n∗ and the cache node j∗ can be determined as

{n∗, j∗} = arg maxE[Yn],

n, j εN
(14)

where, j∗ is determined by the corresponding n∗.
The maximum reward function of the energy saving prob-

lem is shown in equation (13). di→1 is a fixed value and
di→n is a random variable, assuming that it obeys uniform
distribution.

To sum up, the selection of cache nodes in the ICV network
has been transformed into the optimal stopping problem.

IV. AN ENERGY-AWARE CACHING SCHEME

In this section, we propose an optimal energy efficient cache
node selection algorithm based on the optimal stopping theory.
The objective of our algorithm is to find the optimal cache
nodes with lower energy consumption.

A. Problem Solution

Before solving the problem, we first prove that there is an
optimal solution for the energy saving expectation maximiza-
tion problem.

Proposition 1: Equation (9) has an optimal stopping rule.
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According to [36], the optimal stopping rule exists when
the following two conditions are satisfied.

A1 : E{supnYn} <∞,
A2 : lim supn→∞Yn ≤ Y∞.

(15)

According to the definition of Yn, we can easily find
limsupn→∞Yn≤−∞, and Y∞=−∞, so limsupn→∞Yn ≤
Y∞ and A2 is proved. Meanwhile, for any nεN+, supnYn <
∞, so E {supnYn} < ∞ must satisfy the condition, and A1
is proved.

When Xn < W ∗, the candidate cache node needs to be
replaced, and the detection node group continues to detect
other nodes. Otherwise, the detection node group should stop
detecting and select the current candidate cache node as the
caching node. Therefore, the stopping rule can be changed to

n∗ = min{n > 1 :
(
1/d2i→1 − 1/d2i→n

)
>W ∗}, (16)

where, the energy saving expectation W ∗ satisfies the follow-
ing condition

W ∗=E[max(1/d2i→1,W
∗)]− Pc. (17)

According to the optimal stopping formula of Theorem 3.1
in [37], the solution method of stopping rule W ∗ is

W = E[max(1/d2i→1,W
∗)]− Pc

=

∫ W∗

0

W ∗ · dF (x) +
∫ l

W∗
x · dF (x)− Pc.

(18)

Meanwhile, it can also be expressed as

W =

∫ l

0

W ∗ · dF (x). (19)

Combining (18) with (19), we can get

∫ l
0
W ∗ · dF (x) =

∫W∗
0

W ∗ · dF (x) +
∫ l
W∗

x · dF (x)− Pc
⇒
∫W∗
0

W ∗ · dF (x) +
∫ l
W∗

x · dF (x)−
∫ l
0
W ∗ · dF (x) = Pc

⇒
∫ l
W∗

(x−W ∗)dF (x) = Pc,
(20)

where, F is the distribution function of xn, which is assumed
to be uniform distribution in this paper. For the discrete
random variable xn, we have

E(xn −W ∗)+=Pc, (21)

thus, the optimal solution to the problem would be obtained
as

W ∗ = E(xn)− Pc. (22)

Finally, the decision rule N(W ) can be determined as

N(W ) =

{
0, W < W ∗

1, W >W ∗,
(23)

where, N(W )=0 means to continue detection. Otherwise,
N(W )=1 means to stop detection, and select the current node
as the cache node.

Intuitively, W ∗ is the critical value of the optimal stopping
rule. It is affected by two network parameters: the communica-
tion distance between different nodes and the energy required
for detection. According to formulas (12) and (22), reducing
the distance between nodes and the energy consumption for
detection will make W ∗ larger. The larger the W ∗ is, the
greater the reward the selected cache node can bring.

B. Optimal Energy Efficiency Cache Node Selection Algorithm

According to the stochastic rule of the optimal stopping
theory, we randomly select the first candidate cache node
v1. The detection group composed of vehicle users within
the communication range detects the distance sequence to
v1 and obtains the corresponding energy consumption. The
next candidate cache node vj is randomly selected, and the
detection method is the same as the first node. Second, the
energy saving is then calculated by comparing the energy
consumption detected at two different nodes. If the energy
saving obtained is greater than or equal to the maximum
expected energy saving W ∗, then node vj is selected as the
cache node and we stop detecting. If no node satisfying the
condition is found within the limited detection times, the first
node v1 is selected as the cache node by default. Algorithm 1
provides a formal description of the optimal energy efficiency
cache node selection algorithm (OEECS).

Algorithm 1: The OEECS Algorithm
1: Input: (c, m, r, Pc, R, n, Tmax)
2: Initialize: j = 0 ;
3: for 1 ≤ j ≤ n do
4: Detecting random variables dj ;
5: stop← false; /* detecting */
6: if (1/d21 − 1/d2j ) ≥W ∗ ∩

(
c
R ≤ Tmax

)
then

7: Sj = E1 − Ej ; /* calculate energy saving */
8: if (Sj > W ∗) then
9: point← vj ;

10: stop← true;
11: else
12: break;
13: end if
14: else
15: j = j + 1;
16: end if
17: end for
18: if (!stop&&j > n) then
19: stop← true; /*no satisfied node can be found.*/
20: point← v1;
21: end if
22: Output: point /* cache node */

We assume that the maximum detection times for the
optimal cache node is n. In the detection process, the worst
case is that no better node is found than the first randomly
selected node, and the number of comparisons is n. Therefore,
the time complexity of the algorithm is O (n), indicating that
the algorithm has high execution efficiency. The more specific
algorithm flow is shown in Fig. 3.
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Fig. 3: The flow chart of OEECS.

We divide the ICV network into two main selection sets: 1)
edge layer: RSU set; 2) end layer: vehicle set. In this paper,
OEECS algorithm is mainly implemented on the end layer, and
the number of iterations is selected according to the specific
number of nodes. After each iteration, a cache node is selected.
At the same time, due to the mobility of the vehicle, the cache
node will be re-selected periodically.

The OEECS strategy consists of four main processes that
enable users to successfully obtain the content they need.
When a vehicle user requests content, the user first accesses
the cache node within its communication range in the ‘end’
layer. If the cache hits, the content is returned directly to the
user. Second, the user accesses the nearest RSU node. If the
RSU has the content requested by the user, the RSU returns the
content directly to the user. Third, the RSU makes a request to
the cache node in the ‘edge’ layer. If the cache hits, the content
is returned to the user via the RSU. Finally, the user requests
the content from the cloud center, and the cloud returns the
content directly to the user.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we perform extensive simulations using
MATLAB, a commercial mathematics software produced by
MathWorks to evaluate our proposed algorithm. We consider a
ICV network covered with a 200m×200m area, in which three
roadsites and several vehicles are randomly scattered over the
region. Through parameter settings in TABLE II, we provide
a comprehensive simulation to compare the performance of
the proposed OEECS algorithm with LCD, Random and
Probcache in terms of energy saving, cache efficiency and
average access latency. In addition, the delivery success rate
of the OEECS is tested and analyzed. The total number of
simulations is 10,000.

The three strategies used for comparison in this paper are:
(1) Leave Copy Down (LCD): this strategy greatly reduces

TABLE II: Simulation parameters.

Symbol Parameters Value
m Number of vehicle users 100 ∼ 1000
Pc Detection energy consumption 1 ∼ 10 J
R Transmission rate 5 ∼ 50 MB/s
c Content size 10 ∼ 100 MB
σ2 Noise power 1 W
f Noise ratio 1 dB
GT Transmission power 1 ∼ 3 W
r Coverage radius 2 ∼ 20 KM

redundancy on the basis of the classic full cache (LCE), and
only selects the next hop of the hit node as the cache node;
(2) Random: the cache nodes are selected by random equal
probability; (3) Probcache: the node closer to the request node
has higher probability to be selected as the cache one.

A. Energy Saving

Energy saving (ES) is a widely used performance evaluation

criterion, calculated by
n∑
j=1

Yj/n. The parameter Yj represents

the energy saved by different nodes compared with the content
obtained by the first randomly selected node.

The effect of Pc on energy saving is shown in Fig. 4. We
can see that Probcache and Random are greatly affected by
Pc, and there is a certain degree of fluctuation due to the
characteristics of their own strategies. OEECS and LCD are
less affected by Pc. Among them, the LCD is least affected
by Pc. Since the next node of the hit point is selected every
time, its detection time is always 1. Due to the method of
LCD is designed simply, its energy saving effect is not ideal.
For Random, it is a random selection of equal probability,
which has a certain probability of selecting detection time,
so it is more affected by Pc than LCD. For Probcache, the
selection probability is proportional to the number of hops
between the current node and the content source, where Pc is
also proportional to the number of hops. Therefore, compared
with LCD, Probcache is more affected by Pc. It is obvious that
OEECS has the highest performance-to-price ratio. Due to the
flexibility of detection times and the characteristics of energy
consumption optimization, OEECS is less affected by Pc, and
the energy saving effect is always higher than the other three
strategies.

In Fig. 5, the impact of the number of vehicle users
m on energy saving is investigated. As m increases, the
four curves show an increasing trend, of which OEECS has
the largest increase. By contrast, LCD has the least energy
saving, due to the fact that LCD reduces the distance by only
one hop. Random and Probcache select cache nodes based
on probability and have greater uncertainty, making up for
singleness and invariance. so the energy saving achieved by
the two schemes is better than LCD. It can be seen from
the comparison that OEECS has the greatest energy saving.
Because it aims to reduce energy consumption, and consider
the total energy saving of all cache nodes from a global
perspective. When the number of m increases, the utilization
rate of cache nodes increases, which contributes to the energy
saving. LCD, Random and Probcache do not consider cache
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Fig. 4: The effect of Pc on energy saving: m=1000, c=50.
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Fig. 5: The effect of the number of vehicle users m on energy
saving: c=50, Pc=10.

placement from a global perspective, ignoring the importance
of node distribution.
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Fig. 6: The effect of c on energy saving: m=1000, Pc=10.

Fig. 6 shows that the larger the content size c is, the more
energy is consumed during transmission. In different schemes,
OEECS achieves the greatest energy-saving growth rate. In
OEECS, c is an important parameter in the reward function.
The energy saving increases almost linearly as the content
size c grows. Probcache selects the node with high centrality

as the cache node, which effectively reduces the transmission
distance and is superior to Random and LCD in energy saving.
However, Probcache is based on weighted probability selection
and there is some uncertainty. Compared with OEECS and
Probcache, the growth rate of Random and LCD is slightly
lower. Since the selection of cache nodes for Random and
LCD is uncertain and exclusive, its effect on energy saving is
not prominent.
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Fig. 7: The effect of R on energy saving: m=1000, c=50,
Pc=10.

As shown in Fig. 7, when R is gradually increased, the
effect of energy saving is getting worse. When R is very
small, Probcache saves more energy than Random. However,
as R increases, the values of Random and Probcache get
closer and closer. After R = 20, they almost overlap. It can
be explained that when R is large enough, the efficiency of
content transmission is high, the role of the cache becomes
smaller, and the advantages of the strategy are difficult to
reflect. In contrast, LCD has the smallest energy saving and
reduction rate. The results show that when the transmission
speed is high enough, the advantage of caching strategy is
not obvious. Although the energy saving of OEECS has a
downward trend, it still saves the most energy.

To sum up, among the four cache strategies, only OEECS
has stronger adaptability to network environment changes and
can obtain more energy saving.

B. Cache Efficiency

The cache efficiency (CE) is another widely used per-
formance evaluation criterion that refers to the energy
saved by transmitting per unit of content, calculated by∑n
j=1 Yj/

∑n
j=1 cj . Yj is the same as described in ES, and

the parameter cj is the size of each transmitted content.
In Fig. 8, we can see that the cache efficiency of the

four strategies fluctuates with the increase of the transmitted
content size. Although c is constantly changing, OEECS
always maintains a high cache efficiency without significant
fluctuation. It has good stability for the energy saved by the
unit content. Compared with OEECS and LCD, Probcache and
Random are greatly affected by c, and some degree of fluc-
tuation is generated. Fluctuations are due to the randomness
of the network and the nature of the strategy itself. However,
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Fig. 8: The effect of c on cache efficiency: m=1000, Pc=10.

since they do not consider the network energy consumption
from a global perspective, they are easily affected when the
network environment changes, and the performance stability
cannot be guaranteed. The OEECS is superior to the other
three strategies, demonstrating its availability and effectiveness
in selecting cache nodes.
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Fig. 9: The effect of R on cache efficiency: m=1000, c=50,
Pc=10.

Fig. 9 shows that the cache efficiency of these four strategies
is affected by the content transmission rate. The best cache
efficiency is OEECS, and the worst is LCD. However, as
R increases, the gap between the four strategies gradually
narrows. The OEECS saves the most unit content energy
due to the goal of energy consumption optimization, which
enables better selection of the best cache node and then energy
consumption is effectively saved. Due to the probabilistic
selection characteristics of Probcache and Random, both of
them are fluctuating. Because Probcache is more targeted than
Random, its cache efficiency is almost higher than Random.
With the increase of R, the cache efficiency of LCD decreases
slowly, and it fluctuates slightly because of the randomness of
the network. However, due to the single choice constraint of
LCD, it is less effective in energy saving of unit content.

In summary, among the four strategies, OEECS has an ad-
vantage in terms of cache efficiency and performance stability.

C. Average Access Latency

The average access latency (AAL) is another widely used
performance evaluation criterion that refers to the time it
takes for a node to get content, calculated by

∑n
j=1 cj ·

di→j/
∑n
j=1Rj . Where cj is the same as described in CE,

the parameter Rj is the content transmission rate, and the
parameter di→j is the distance between the two different
nodes.
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Fig. 10: The effect of c on average access latency: m=1000,
Pc=10.

As shown in Fig. 10, the average access latency increases
as c grows. It can be explained that the larger the c is, the
more content is transferred across the network. Therefore, the
longer latency is required to get the content. The LCD grows
almost linearly, and is most affected by c. It shows that LCD
has little effect on reducing access latency, which is attributed
to the singularity of the LCD strategy itself. The average
access latency of Probcache and Random is between LCD and
OEECS. This shows that these two strategies can effectively
reduce the access latency to some extent and shorten the
distance between the node and the required content. Since
the cache node in Probcache is selected according to the
probability generated by multiple factors weighting, the effect
is superior to Random. Among them, OEECS is slowly rising,
which is the least affected by c. Due to the fact that the OEECS
aims to optimize energy consumption, which is proportional
to the distance between nodes. Under the same conditions, the
distance is reduced and the latency is correspondingly reduced.

In Fig. 11, we can see that the average access latency
decreases as R increases. In the case of other parameters
remaining unchanged, the larger the R is, the less time it takes
to retrieve the content. As R increases, the reduction rate of
average access latency of LCD is the greatest, it shows that
the main factor of the average access latency reduction is R,
and its caching strategy is not prominent. In contrast, OEECS
has the smallest decline. The results show that OEECS plays
an important role in reducing the average access latency. The
decline of Probcache and Random is relatively comparable,
between LCD and OEECS. At the beginning, when R is small,
the average access latency of Probcache is significantly lower
than Random. However, as R increases, the difference between
the two strategies are getting smaller. This shows that when
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Fig. 11: The effect of R on average access latency: m=1000,
c=50, Pc=10.

the network spreads very well, the effect of reducing access
latency using Probcache and Random is similar.

Through analysis and comparison, OEECS has better ob-
jectivity and can further reduce network latency in a good
network environment.

D. Delivery Success Rate

The delivery success rate (DSR) is the probability of finding
the best cache node within a limited detection times, calculated
by

n∑
j=1

n∗j/n. The parameter n∗j is the time the node needed

to be changed to find the best cache node.
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Fig. 12: The effect of Pc and coverage radius r on delivery
success rate.

As shown in Fig. 12, when Pc is a fixed value, the DSR
remains almost unchanged as the r increases. This shows that
DSR is less affected by r. It can be explained by the fact
that the OEECS selects the cache node based on the result
of comparison with the energy saving expectation, regardless
of the communication coverage. When r is a fixed value, the
DSR decreases slowly as Pc increases. The reason is that Pc is
the extra energy that needs to be consumed for each detection.
In terms of energy saving, the increase of Pc will reduce the
energy saving effect. The smaller the energy saved, the lower
the probability of detecting a node that satisfies the condition,
leading to the reduction of DSR. According to the analysis,

the OEECS does not fluctuate significantly under the condition
of the whole parameters change and always maintain a good
delivery success rate.

VI. CONCLUSION

In this paper, an energy-aware caching strategy for info-
tainment services is proposed in the ICV network. First, we
propose a cache node selection problem, which aims to put
the content in the best position to reduce network energy
consumption. Then, in order to solve this problem, we con-
struct a network energy consumption model and transform the
problem into an optimal stopping problem. Finally, we propose
a optimal energy efficient cache node selection algorithm
based on optimal stopping theory. The simulation results show
that the proposed algorithm has a significant improvement in
network performance compared with the baseline strategies,
especially in energy saving.
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