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Abstract

Motivated by the breakthroughs of AI in both 
theory and applications, we are perceiving a 
great potential for network innovations from a 
new dimension of intelligence. However, as the 
engine of networks, switches are designed as 
“dumb” network elements with the sole purpose 
of forwarding network packets, and thus a barrier 
against the entrance of AI as an intrinsic part of 
the network is unconsciously erected. This article 
proposes an evolved switch architecture aimed at 
breaking this barrier and accommodating in-net-
work intelligence. We enhance the current switch 
architecture by embedding an intelligence plane, 
which is externalized as an intelligent computa-
tion pluggable module of an evolved switch. The 
module employs an integrated solution of “X86 
CPU+GPU+DPDK,” which provides a high-per-
formance and high-throughput open platform for 
hosting in-network intelligence. We further con-
ceive a flexible processing framework for an intel-
ligent traffic measurement, recognition, and traffic 
regime. We also carry out extensive experiments 
to demonstrate the capability of the evolved 
switch by deploying a prototype in a campus net-
work, with two promising application scenarios: 
in-network application identification and in-net-
work anomaly detection.

Introduction
As the most important information infrastructure, 
the Internet has been undergoing a great leap 
forward in development in the past few decades, 
and it becomes increasingly busy with billions of 
websites, active users, and connected devices. 
The huge amount of data generated by these 
devices are leading to the zettabyte era where 
the global IP traffic will grow to 4.8 ZB per year 
by 2022 [1]. This explosive trend in the Internet 
inflicts unprecedented challenges of scale, com-
plexity, dynamics and cost on the current “human-
in-the-loop” network operation and management. 
Due to the reliance on humans to intervene, it is 
prone to induce misoperations, slow response to 
network events, and lots of heavy manual work 
[2]. Against these leap-over changes in the net-
work landscape, “human-on-the-loop” network 
operation, rather than human-in-the-loop, is highly 
expected to bolster the robustness of the cyber 
network and to achieve prompt response to net-
work events and dynamics.

Recently, artificial intelligence (AI) has made 
a breakthrough in both theory and applications. 
Due to its intrinsic nature of handling complex 
problems, AI provides a new opportunity to 
explore the network innovation of human-in-the-
loop, aimed at self-motivated and proactive net-
work operation. There are rich achievements in 
intelligent network operations, for example intelli-
gent resource allocation [3], traffic predication [4], 
route planning [5], quality of experience (QoE) 
provisioning [6], and fault diagnosis [7], as well 
as intelligent anomaly detection. Although these 
advances improve the network performance, 
most of them lay emphasis on the network system 
modeling and intelligent algorithms concerning 
training, inferring, or decisions, rarely discussing a 
fundamental problem of whether current network 
infrastructure is capable of bolstering the running 
of these algorithms.

In light of the basic end-to-end principle, the 
Internet was originally conceived as a dumb net-
work, where switches, the intermediary nodes 
of the network, were designed as dumb pipes 
only to forward network packets. Naturally, this 
design unconsciously induces a barrier against 
in-network intelligence, and the intelligence is 
expelled into the end system at the network 
periphery. Such a network landscape spawns 
cloud and edge-based intelligence [9]. With the 
aid of cloud and edge computing facilities, AI 
algorithms can be deployed by collecting, analyz-
ing, and inferring network data concerning users, 
applications, content, or network status from the 
intermediary switches. Any policy generated by 
the AI algorithms is mapped into network con-
figuration actions for automating its operations. 
This promising centralized intelligence exhibits 
a clumsy and tardy nature in response to net-
work events and dynamics due to such a massive 
amount of data distributed across the network 
being collected, analyzed, and stored. In con-
trast, in-network intelligence that dwells in the 
intermediary nodes of a network provides an 
agile way to enforce online cognition of network 
events from network traffic and local execution 
of the network policy, thus achieving a prompt 
reaction to network events and dynamics. How-
ever, current network infrastructure lacks suffi-
cient capabilities of supporting the deployment 
of in-network AI. In this section, we introduce 
two kinds of representative architectures in 
future networks.

Shuangwu Chen, Xiang Chen, Zhen Yao, Jian Yang, Yangyang Li, and Feng Wu  

DATA SCIENCE AND ARTIFICIAL INTELLIGENCE FOR COMMUNICATIONS

As the engine of net-
works, switches are 

designed as “dumb” 
network elements with 

the sole purpose of for-
warding network packets, 

thus a barrier against 
the entrance of AI as 

an intrinsic part of the 
network is unconsciously 
erected. This article pro-
poses an evolved switch 

architecture aiming for 
breaking this barrier and 
accommodating in-net-

work intelligence.

Shuangwu Chen, Xiang Chen, Zhen Yao, JianYang and Feng Wu are with the University of Science and Technology of China;  
Yangyang Li is with China Academy of Electronics and Information Technology

Digital Object Identifier:
10.1109/MCOM.001.1800923

Evolving Switch Architecture toward 
Accommodating In-Network Intelligence

YANG_LAYOUT.indd   33YANG_LAYOUT.indd   33 1/21/20   10:22 AM1/21/20   10:22 AM



IEEE Communications Magazine • January 202034

This situation inspires us to empower AI as 
an intrinsic part of network infrastructure so that 
the network operation and management can be 
automated. To achieve this, we advocate evolving 
the switch architecture from a “dumb” network 
element to an intelligent network agent having 
the capability of network cognition. We embed 
an intelligence plane into the switch while inher-
iting the original data plane and control plane. 
This intelligence plane, which is embodied as a 
pluggable intelligence card, collaborates with 
the data plane and control plane to form a local 
closed loop of “sensing-cognizing-acting,” so the 
proposed switch is able to understand and react 
automatically to potential network events and 
dynamics. Notably, this idea is very different from 
the typical in-network computations [9], which 
focus on performing operations on the received 
data in the intermediate nodes, including data 
compressing, transcoding, aggregating, and so 
on, to improve the communication efficiency. The 
contributions of our work are three-fold:
•	 We propose an evolved switch architecture 

for hosting in-network intelligence, while 
conforming to legacy devices, systems, and 
protocols. In the implementation, we con-
ceive a high-performance open platform 
to achieve high-throughput traffic process-
ing based on commercial off-the-shelf “X86 
CPU+GPU+DPDK.”

•	 We develop a flexible processing frame-
work for accommodating diverse demands. 
Equipped with various algorithms, it can be 
applicable to intelligent traffic sensing, cog-
nizing, and regulating.

•	 We conduct two promising applications, 
application identification and anomaly 
detection, to demonstrate the potential of 
the evolved switch architecture. The results 
show its high feasibility and applicability for 
supporting in-network intelligence.
The remainder of this article is organized as 

follows. We present the structure of the evolved 
switch system architecture and its key concepts 
in the following section. Then we review the sup-
porting software framework in detail. Following 
that, we present the open hardware platform for 
supporting congestion in traffic. Finally, we con-
clude the article.

Switch System Architecture for 
In-Network Intelligence

In this section, we give the basic design principles 
and then present a two-tier system architecture 
for supporting in-network intelligence.

Basic Design Principle

While evolving the switch architecture, we adhere 
to the following five particular principles.

Inheritance of Existing Functions: The evolved 
architecture should not alter the fundamental 
functions of a switch like data forwarding and 
controlling logic, which is beneficial for keeping 
interoperability with legacy devices, systems, and 
protocols.

Independence from Data Forwarding: Embed-
ding AI into switches should not sacrifice the 
performance of data forwarding. The nontrivial 
AI workload running on the switch may occupy 

a significant amount of computing and memory 
resources. This principle guarantees high perfor-
mance in the data forwarding of the switches.

High-Performance for High-Throughput 
Traffic Cognition: The traffic perception of the 
dynamic and uncertain network environment is 
the foundation of building in-network intelligence 
for autonomous decisions. This principle ensures 
the pre-requisite condition for recognizing mas-
sive traffic concerning diverse applications and 
services.

Openness for Accommodating Diverse 
Demands: Network intelligence is expected to be 
developed diversely for handling network issues 
in different aspects and at different levels. Hence, 
this principle guarantees an open and flexible plat-
form that facilitates the innovation of in-network 
intelligence and accelerates its deployment.

Cooperativeness among Switches: Net-
work-system-level knowledge is a precondition 
to enforce network-system-level intelligence. This 
principle enables intelligent switches to share their 
knowledge acquired locally and to form global 
network knowledge to achieve high-level intelli-
gence.

It is challenging to design a novel switch archi-
tecture to fulfill all the requirements for compati-
bility, capability, and scalability concurrently.

System Architecture

Following the design principles, we conceive a 
two-tier comprehensive system architecture as 
shown in Fig. 1, which provides both the local and 
global network intelligence. We establish an intel-
ligence plane in the evolved switches for hosting 
in-network intelligence, while the original data and 
control planes of the switches are kept in order to 
conform to a variety of legacy systems. The intel-
ligence plane performs three roles within the net-
work: sensor, cognition apparatus, and regulator. 
Specifically, the sensor refers to extraction of the 
critical features from the network traffic passing 
through the switches. The cognition apparatus is 
able to understand latent events occurring in the 
network. Equipped with various AI-based cogni-
tion algorithms, it can be applicable to carry out 
fault diagnosis, anomaly detection, traffic identifi-
cation, and so on. The regulator means orchestrat-
ing various control policies to manipulate traffic 
flows. The aforementioned three functions con-
stitute a closed loop of a “sensing-cognizing-act-
ing” process, which contributes to managing the 
local network in an autonomous manner, that is, 
achieving local in-network intelligence.

The evolved switch may be applicable in 
various network contexts to achieve ubiquitous 
in-network intelligence. For instance, it can be 
deployed as an edge computing infrastructure in 
wireless cellular networks. Meanwhile, it can also 
be installed to measure and analyze the east-to-
west network traffic to infer the network events 
in the data center network. In addition, in the sce-
nario of enterprise networks, it can enforce intelli-
gent traffic identification for internal visibility, thus 
understanding the network status, monitoring and 
and protecting internal assets.

For the purpose of achieving high-level net-
work intelligence, a management plane is pro-
posed to coordinate these switches. Since a 
specific network event may have its own unique 
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traffi  c pattern, such as request preference, attack 
signature, or bandwidth variation, sharing this 
knowledge is beneficial for improving network 
performance at the network level. For example, 
the locally learned features or knowledge of a 
detected attack can be shared and reused by 
other remote intelligent switches. The manage-
ment plane gathers and learns this knowledge 
from diff erent parts of the network, and optimizes 
the network confi gurations from a global perspec-
tive.

Diff erent from the typical cloud-based network 
intelligence solution, only the cognition results, 
rather than the raw data, are gathered. Hence, 
the amount of data is trivial. It would considerably 
reduce the bandwidth consumption and avoid 
data disclosure. This gathering-learning-confi gur-
ing cycle at a high level could fulfi ll the self-man-
agement of the network system.

FLEXIBLE SOFTWARE FRAMEWORK FOR 
SUPPORTING CUSTOMIZABLE NETWORK 

INTELLIGENCE

The software framework for the intelligence plane 
depicted in Fig. 2 is composed of three basic 
components: traffi  c sensor, traffi  c cognition appa-
ratus, and traffi  c regulator.

TRAFFIC SENSOR

As shown in Fig. 2, the traffi  c sensor consists of a 
packet capture module and a feature extraction
module. In the packet capture module, a pack-
et filter is employed to screen out the pertinent 
captured data by matching fi lter rules in terms of 
protocols, IP addresses, ports, and so on. Packet 
processing is supposed to be accelerated using 
multithreading, especially for a high-speed net-
work. It may be that multiple threads are manip-
ulating the same flow in parallel. However, for 
stateful protocols such as TCP, packets belonging 

to the same fl ow must be processed in sequence. 
Therefore, a fl ow reassembly module is designed 
to aggregate and align packets according to their 
protocols and sequence numbers.

As claimed in [10], the network traffic meta-
data could provide the underlying information 
required for representing and profi ling user appli-
cation activity. This would considerably reduce 
the requirement of data transmission, storage, 
and processing. Motivated by this fact, the feature 
extraction module in a traffi  c sensor is designed to 
extract the critical feature information concerning 
structural, statistical, or even hidden features. The 
structural features contain the fi elds of version, IP 
address, port number, and type of service in the 
protocol header of the network flow, while the 
statistical features are the measurement results of 
each fl ow including mean and variance of packet 
size, inter-packet duration, and so on. The hidden 
features represent a combination of latent attri-
butes that describe the network communication, 
applications, and content. These features may be 
extracted for representation learning using a con-
volutional neural network (CNN) [11].

TRAFFIC COGNITION APPARATUS

The traffic cognition apparatus gets deep insight 
into the metadata in order to understand the 
behavior of network entities and network applica-
tions as well as network services. Fundamental AI 
algorithms for traffi  c analysis can be dynamically 
deployed for traffic visualization, fault analysis, 
attack detection, and application identification. 
Specifically, the statistical metrics from the traf-
fi c sensor, that is, bandwidth consumption, traffi  c 
composition, latency, packet loss, and so on, can 
be used to carry out real-time visibility of the net-
work dynamics. Training with historical data, a 
deep neural network (DNN) is able to learn the 
normal behavior of the network entities, and devi-
ations from the normal behavior can be detected 
as abnormal or unknown events. Since the char-

Figure 1. Two-tier in-network intelligence architecture with AI-enabled switches. 
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acteristic metadata is able to portray the internal 
properties of network events, we implement a 
set of machine learning and deep learning meth-
ods to verify their feasibility for both in-network 
application identifi cation and anomaly detection, 
which are further discussed in the experiments. 
The traffic cognition apparatus allows a central-
ized network management system to access the 
cognition results and customize their own cogni-
tion algorithms on the switches.

TRAFFIC REGULATOR

Exploiting the cognition results, the traffic regu-
lator is able to orchestrate and enforce control 
policies to manipulate the traffic. A set of basic 
operations includes fl ow interception, bandwidth 
assignment, forwarding scheduling, and network 
event warning. The flow interceptor may drop 
illegal packets, which provides a prompt way to 
defend against network attacks, malware, or other 
dangerous entities. With the aid of the local main 
control card, the forwarding scheduling module 
is able to dynamically adjust the forwarding port 
of the forwarding information base (FIB). It also 
allows support for assigning bandwidth and pri-
ority to certain applications to satisfy their own 
specific quality of service (QoS) requirements. 
An example is that real-time video streaming 
is more time sensitive than, say, file download. 
Thus, video transmission would be assigned more 
bandwidth or higher priority to prevent playback 
interruptions, while the file download could be 
delayed without significantly degrading its QoS 
performance. These configurations are fulfilled 

by the control plane of the switch via the Remote 
Process Call (RPC) protocol. The traffi  c regulator 
is also open to allowing the network operator to 
fl exibly deploy their customized control policies.

OPEN HARDWARE PLATFORM FOR 
SUPPORTING TRAFFIC COGNITION

A single switch card may contain dozens of 
ports having a high capacity of 10/40/100 Gb/s. 
Hence, in order to conduct real-time traffic cap-
ture and analysis, it is essential to develop an 
open high-performance platform for the evolved 
switch. Although relying on dedicated chips 
(application-specifi c integrated circuit [ASIC], net-
work processor, etc.), the traditional switch has 
gained success in implementing high-speed pack-
et processing, this hardware design may be not 
appropriate for hosting in-network intelligence. 
Since a dedicated chip couples the hardware and 
software development, it lacks suffi  cient capabil-
ity and flexibility for supporting the deployment 
of various computation-intensive AI algorithms. 
Despite the fast advances in general-purpose 
hardware components like X86 multicore CPU 
and the modern graphics processing unit (GPU), 
processing traffi  c online at such a high  rate with 
general-purpose hardware is still nontrivial.

By inheriting the original modules of a switch 
including switch card, main control card, switch 
fabric, and backplane, we conceive an additional 
new intelligence card for online packet analysis 
and network decisions. The control information 
is exchanged via the backplane, which is isolat-
ed from the data traffic exchanged through the 
fabric. This isolation avoids the degradation of 
forwarding performance due to additional AI 
workloads. The collaboration of these modules 
is described as follows. The incoming network 
packets are forwarded to the out ports via switch 
fabric according to FIB, while, aided by the main 
control card, these packets of interested flows 
are duplicated and forwarded to the intelligence 
card for further analysis. The decision generated 
by AI on the intelligence card is mapped into the 
actions that are executed by the local main con-
trol card to optimize the network operations.

DATA HIGHWAY FOR NETWORK TRAFFIC ANALYSIS

In order to enforce online traffi  c analysis, a prom-
inent step is to construct a data highway between 
the network interface cards (NICs) and CPU/
GPU. The internal NICs are connected to CPU 
through PCIe, as depicted in Fig. 3. The state-of-
the-art PCIe 3.0 has a bandwidth of 128 Gb/s, 
while the emerging PCIe 4.0 improves capabilities 
up to 512 Gb/s, which allows building a traffic 
acquisition platform with higher throughput.

With this hardware platform, we employ the 
user space packet IO engine, namely the data 
plane development kit (DPDK), to circumvent 
the slow in-kernel network stacks and construct a 
high-speed data channel from NIC to user space. 
By memory address mapping, it provides zero-co-
py data access for protocol parsing and packet 
batching in the CPU domain, which avoids fre-
quent system calls and redundant memory copy-
ing between kernel and user space. Accordingly, 
only a single data copying from NIC to the device 
memory of GPU is performed.

Figure 2. Software framework for supporting in-network AI. 
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We exploit the unique architecture of multi-
core CPU and multi-queue NIC to conceive a 
one-core-to-one-queue mapping mechanism, as 
depicted in Fig. 3, for achieving highly parallel and 
high-throughput traffic acquisition. Specifically, 
the ring buff er of NIC is split into multiple queues, 
and each NIC queue is bound with a dedicated 
core of CPU. A hash function is invoked to uni-
formly distribute the incoming packets to the NIC 
queues, thus balancing the workload among the 
CPU cores. The packets capturing and processing 
in the CPU domain are performed concurrent-
ly, which significantly improves the throughput 
of packet processing. Since per-flow analysis 
requires the packets belonging to the same fl ow 
to be processed in sequence, the aforementioned 
hash key is used to map the packets belonging to 
the same fl ow to a unique GPU thread.

HIGH-THROUGHPUT TRAFFIC ANALYSIS USING GPU
In the context of network intelligence, the GPU is 
not only the carrier of the running AI algorithm, 
but also the engine of high-throughput traffi  c fea-
ture extraction for further inferring network events 
relying on its considerable number of streaming 
processors. Transferring a deluge of raw traffic 
data directly from host memory to GPU incurs 
substantial PCIe transaction overhead, which fur-
ther reduces the throughput between them. In 
order to handle this issue, we trim the raw pack-
ets to retain only valuable information that might 
be used by the subsequent traffic cognition in 
the GPU domain. On the other hand, data are 
transferred in batches, and a ping-pong buffer-
ing scheme is employed, as shown in Fig. 3, to 
improve the processing throughput. Specifi cally, 
in the device memory, we allocate two separate 
buffers to parallel the cross-device data transfer 
and the GPU data processing. While the GPU is 
performing deep analysis for the packets in one 
buff er, the CPU copies newly arrived packets to 
another. A monopolized CPU core is in charge of 
copying the data batches to GPU device memory 
through direct memory access (DMA). This design 
can take full advantage of the GPU performance 
due to no wait for data copying. In order to satisfy 
diverse processing functions like packet fi ltering, 
reorganizing, and cognizing, we organize the traf-
fi c processing in the GPU domain into a pipeline, 
as characterized in Fig. 3. This pipeline consists of 
three basic units: packet fi lter, feature extraction, 
and traffic cognition. For the sake of hiding the 
memory access latency, the technique of group 
prefetching is used to de-couple the access over-
lapping arising from these processing units, thus 
enabling the accelerated parallel processing for 
bolstering the in-network AI algorithm.

ACHIEVABLE PERFORMANCE EVALUATION

In this platform, we conducted an experiment 
to evaluate the performance improvement 
by employing the general-purpose X86 CPU + 
GPU + DPDK design on traffi  c processing. A sin-
gle intelligence card was used in the evaluation, 
which was equipped with two Intel E52620 v2 
CPUs and one TESLA P4 GPU. We measured the 
achievable throughput and the GPU utilization 
against diff erent packet sizes, while extracting the 
statistical features on a 40 GbE link. As shown in 
Fig. 4, the processing throughput increases with 

the packet size. The reason behind this is that 
the smaller the packet size is, the more packets 
are received and copied, which incurs additional 
cross-device I/O overhead. Specifi cally, for the 64 
B/packet traffi  c analysis, a single intelligence card 
reaches over a throughput of 11 Gb/s with maxi-
mum GPU utilization higher than 50 percent. It is 
capable of tackling all the packets on a 40 GbE 
link with a packet size of 512 B. The results illus-
trate that the GPU can significantly boost traffic 
analysis. Given that the GPU is not fully utilized in 
Fig. 4, the CPU processing has become the bottle-
neck of our system. Thus, there is great potential 
to apply high-end CPU and GPU to process pack-
ets in a higher-speed network.

APPLICATION SCENARIOS FOR AN 
AI-ENABLED SWITCH

The performance of our AI-enabled switch is ver-
ifi ed in two typical scenarios, namely application 
identifi cation and anomaly detection. The experi-
ment results validate its fl exibility and applicability 
for supporting in-network intelligence.

Figure 3. High-performance and high-throughput platform for evolved switches.
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In-Network Application Identification

Application identification plays a critical role in 
network management, which contributes to traffic 
engineering, route planning, network provision-
ing, and traffic billing. Traditional traffic identifi-
cation relies on rules matching, which has low 
treatment efficiency and fails to handle encrypted 
traffic. Instead, AI-based schemes use observable 
statistical features or latent embedded features of 
traffic flows to characterize the distinctive proper-
ties of network applications, which seem to be a 
promising solution. In the experiment, we invoked 
both traditional machine learning methods (i.e., 
ThunderSVM [12], XGBoost [13]) and the latest 
deep learning methods (i.e., DNN and CNN) to 
implement the in-network application identifica-
tion on our AI-enabled switch. In particular, 45 
statistical features are used as the inputs of the 
former three algorithms, which are classified into 
three types: protocol-related features (e.g., pro-
tocol type), size-related features (e.g., protocol 
size), and time-related features (e.g., duration and 
packet interval). The first 784 bytes of each flow 
are transformed to a virtual image and taken as 
the input of a CNN. The learning model is trained 
offline and inferred online. We captured and 
labeled the traffic of our laboratory as the training 
and testing datasets, which were composed of 20 
common applications: WeChat, BitTorrent, Skype, 

online games, and so on. The captured traffic was 
replayed by TCPReplay for testing, and the identi-
fication accuracy is shown in Table 1. Due to the 
limited capacity of TCPReplay, it was impossible 
for us to replay the traffic at a rate up to 40 Gb/s. 
Instead, we took the metadata extracted from the 
raw data as the input of the four identification 
algorithms and measured their achievable pro-
cessing speed, as shown in Fig. 5.

It can be seen that the four algorithms achieve 
an identification accuracy of higher than 90 per-
cent and can tackle at least 10,000 active flows 
per second. Although ThunderSVM, XGBoost, 
and DNN have the same input features, DNN 
remarkably outperforms the other two schemes 
in both accuracy and speed. That is because the 
well-trained neural network is better at charac-
terizing the difference among different applica-
tions, and the network structure of DNN is simple 
with low computational complexity. Also, we can 
observe that CNN has the highest accuracy of 97 
percent, but its processing speed is relatively low. 
It illustrates that the payloads of the packets are 
beneficial for identifying different applications, 
and the convolution operation incurs additional 
computation overhead. The experimental results 
exhibit the high performance and high throughput 
of our hardware design.

In-Network Anomaly Detection

An essential aspect of network security is to detect 
the attacks traversing the network. AI-based 
anomaly detection is proven to be a promising 
way to prevent zero-day attacks and encrypted 
attacks, which would be a challenge for tradition-
al signature-based methods. We conducted four 
in-network anomaly detection algorithms, that is, 
ThunderSVM, XGBoost, DNN, and CNN, on our 
AI-enabled switch. In the experiment, we used 
80 statistical features to characterize the behavior 
and interaction of a session, which were taken as 
the input of ThunderSVM, XGBoost, and DNN 
algorithms. The inputs of CNN were the same as 
the above experiments. The CICIDS2017 dataset 
[14], including 10 different types of anomalies and 
massive benign traffic, were replayed to train and 
test the algorithms. Table 1 presents their achiev-
able performance in terms of detection accuracy 
and recall rate. Similar to the above experiments, 
the metadata were used to verify the processing 
rate of these algorithms, as shown in Fig. 5.

Table 1. Parameters and performance of different algorithms.

Scenario Algorithm Parameter Recall Precision F1-score

Application 
identification

XGBoost tree_method = pgu_hist, max_depth = 6 0.9 0.91 0.9

ThundersSVM kernel = rbf, cost parameter c = 10, g = 0.025 0.92 0.94 0.93

DNN 6 fully-connected layer + 3 batch-normalize layer 0.94 0.95 0.93

CNN 2 convolution layer + 2 fully-connected layer 0.97 0.97 0.97

Anomaly 
detection

XGBoost tree_method = gpu_exact, max_depth = 15 0.97 0.96 0.97

ThuderSVM kernel = rbf, cost parameter c = 10, g = 0.125 0.93 0.96 0.95

DNN 8 fully-connected layer + 3 batch-normalize layer 0.95 0.97 0.96

CNN 4 convolution layer + 2 fully-connected layer 0.98 0.98 0.98

Figure 5. Performance of applying AI-enabled switches to both application 
identification and anomaly detection.
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From Table 1, we can observe that the 
detection accuracy of the four algorithms 
reaches higher than 96 percent, while CNN 
achieves the highest accuracy of 98 percent. It 
illustrates that the application layer data in the 
payload are beneficial for anomaly detection. 
As illustrated in Fig. 5, DNN is able to detect 
100,000 active flows per second, which remark-
ably outperforms the other three algorithms. 
Meanwhile, compared to the application identi-
fication, the increase of input features will slow 
down the processing speed.

Conclusion
In order to embed AI into network infrastruc-
ture for automating the operation of networks, 
we evolve the switch architecture toward accom-
modating in-network intelligence. Different from 
existing switch architecture, we introduce an 
intelligence plane that could be externalized as 
intelligent computation pluggable modules in the 
switches while inheriting the original data plane 
and control plane. This built-in intelligence design 
allows us to upgrade current network infrastruc-
ture in a smooth and low-cost manner without 
additional upgrading of supporting facilities. The 
feasibility and applicability are verified by imple-
menting this design in a commercial switch.

We believe that this proposed evolved switch 
architecture has many more implications for 
in-network intelligence than investigated in our 
work. Many interesting issues remain to be further 
explored. For instance, we will consider applica-
tion-aware traffic engineering that can combine 
the flow information and network state to pro-
vide QoS guarantees. AI-based strategies such 
as re-routing and bandwidth adjustment can be 
implemented to optimize QoS. Second, multi-
agent cooperative decision making can be intro-
duced to enable collaborative network edge 
caching. Third, combining the intelligent switch 
with software defined networking will contribute 
to network-system-level intelligence.
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