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ABSTRACT Shape representation for 3D models is an important topic in computer vision, multimedia
analysis, and computer graphics. Recent multiview-based methods demonstrate promising performance for
3D model recognition and retrieval. However, most of the multiview-based methods focus on the visual
information from the taken views and ignore correlation information among these views, which means the
similarity and differentiation of multiple views have lost in their methods. In order to address this issue,
we propose a novel two-stream network architecture for 3D model recognition and retrieval. The proposed
network includes two sub-networks: a multi-view convolutional neural network (MVCNN) that extracts the
view information from the taken views, and an Visual Saliency model that defines the weight of views based
on the similarity and differentiation information of multiple views. Special, the weight of views defined by
the Visual Saliency model can effectively be used to guide the visual information fusion in MVCNN model.
This design can make the MVCNN model save visual information and the correlation information of these
views in the learning step. Finally, we employ early-fusion method to fuse the feature vectors fromMVCNN
model and Visual Saliency model respectively, to generate the shape descriptor for 3Dmodel recognition and
retrieval. The experimental result on two public datasets, ModelNet40 and ShapeNetCore55, demonstrates
the correlation information ofmultiple views is crucial for view-based 3Dmodel recognitionmethods and the
proposed method can achieve the state-of-the-art performance on both 3D object classification and retrieval.

INDEX TERMS 3D model, view-based, classification, retrieval, MVCNN, LSTM.

I. INTRODUCTION
In recent years, 3D technologies became popular in the folk
gradually with the application in film and television industry.
People can see the 3D models almost everywhere, so it’s
natural and reasonable to explore the more efficient meth-
ods to learn the representation of 3D models. Besides, with
the development of computer vision and 3D reconstruction
technology, 3D model recognition has became a fundamental
task in shape analysis which is the most crucial technol-
ogy for processing and analyzing 3D data. Thanks to the
powerful deep learning neural networks and the availability
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of large-scale labeled 3D model collections, lots of deep
networks have been proposed for 3Dmodel recognition, such
as MVCNN [1], 3D modelNets [2], PointNet [3], VoxNet [4].

Among the current methods, view-based methods perform
best. One well-known example of view-based methods is
Multi-View Convolutional Neural Networks [1] (MVCNN).
As a combination of multiple 2D projection features learned
by CNN within an end-to-end trainable fashion, this method
have made the milestone for 3D model recognition and
achieve the state-of-the-art performance at the time. Inspired
by the success of MVCNN, various researcher have tried
to build an unified deep learning model that can benefit
from the projected view images to perform the tasks of 3D
object classification and retrieval. However, in thesemethods,
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FIGURE 1. The framework of our method, which includes two sub-networks. The first sub-network focus on the multi-view of 3D model to output the
visual feature vector and the second sub-network focus on the sequence-view of 3D model to output the serialized feature vector. The attention pooling
part is a view-level attention to convoluted feature. Finally, we concatenate two-stream output features as our final feature for 3D model recognition.

we note that all views are treated equally to generate the
shape descriptor. The similarity and differentiation between
different views of the model are ignored through these net-
works. For example, in MVCNN, the visual features are fed
to a view-pooling layer to generate a descriptor whereas the
view-pooling layer only preserves the information from the
related view with the maximum values and discards other
information of multiple views. Actually, it is important to
exploit the similarity and differentiation of the multiple views
for analysing the 3D objects.

In order to alleviate this issue, we propose a novel
two-stream network architecture based on multiple views
taken from the 3D models. The two sub-networks of the
proposed network can be briefly described as: a multi-view
convolutional neural network (MVCNN) model that extracts
the view information from the taken views, and a Visual
Saliency model, which is constructed by the LSTM modules
and soft-attention module, that defines the weight of views
based on the similarity and differentiation information of
multiple views. Especially, the weight of views defined by
the Visual Saliency model can effectively be used to guide the
visual information fusion in MVCNN model. The purpose of
this design is to make the MVCNN model both save visual
information and the correlation information of these views
in the learning step. Finally, we employ early-fusion method
to fuse the feature vectors form MVCNN model and Visual
Saliency model respectively, to generate the shape descriptor
for 3D model recognition and retrieval. The whole network
structure can be seen in Fig.1.

The contributions of this paper can be summarized as
follows:

• We propose a novel two-stream network based on visual
differentiation information, consisted of a MVCNN
model and a Visual Saliency model. Unlike existing
view-based methods, we both save the visual informa-
tion and the correlation information by updating the
weights of different views from the Visual Saliency
model.

• We effectively utilize the weight of views defined by the
Visual Saliency model to guide the visual information

fusion in MVCNN model. The design of this network
architecture aims at allowing theMVCNNmodel to save
both visual information and the correlation information
from the taken views.

• We design different experiments to verify the sig-
nificance of the correlation information in the
multiview-based methods and the effectiveness of our
network. The comparison with recent effective methods
on the public dataset turns out we achieve the state-of-
the-art performance, which means our network obtains
a better representation for the 3D models. The final
experimental result also demonstrates the superiority of
our methods.

We organize the rest of this paper as follows: in
Section 2, we do a coarse review of the current related
work. In Section 3, we describe our networks architecture in
detail. We provide related experiments, results and analysis
in Section 4. Finally, we conclude this paper in Section 5.

II. RELATED WORKS
Recently, a large number of 3Dmodel analysis methods based
on deep learning neural networks have been proposed. In gen-
eral, these methods could be roughly categorized into two
classes: 3D model-based methods and view-based methods.
We briefly review some typical methods on the 3D model
representation problem in this section.

A. MODEL-BASED METHODS
Model-based methods learn the representations of mod-
els directly from 3D data formats, such as voxel
meshes [2], [4]–[7], polygon meshes or surfaces [8]–[11],
and point clouds [3], [12]. For example, Chopra et al. [13]
proposed a unsupervised method to learn the 3D local fea-
tures. In addition, these features are represented by surface
patterns that capture common geometries and structures
in a large number of 3D local regions. For 3D meshes
feature learning, Mesh convolutional restricted Boltzmann
machines (MCRBMs) is proposed by Han et al. [14] in
order to learn the global features of meshes. MeshNet [15]
is proposed by Feng et al., which can alleviate the problem

5980 VOLUME 8, 2020



W. Nie et al.: Two-Stream Network Based on Visual Saliency Sharing for 3D Model Recognition

of the complexity and irregularity from the mesh for-
mat and perform three-dimensional shape representation
by employing the face units and feature splitting. Besides,
it is recommended that the DLAN [16] network directly
process the local area of the 3D model and aggregate the
local 3D rotation invariant features on the retrieval task.
Klokov and Lempitsky [17] proposed Kd networks, which
can handle unstructured point clouds and use learning fea-
tures to perform retrieval tasks. Wang et al. [18] put forward
a 3D CNN network based on the octree representation,
which greatly improves the computational efficiency com-
pared with the traditional full-voxel-based representations.
Recently, DGCNN [19] was proposed by Wang et al., which
focus on the point cloud feature learning. To both main-
tain permutation invariance and capture the local geometric
featuresof point cloud, they proposed a new neural net-
work module named EdgeConv. Xie et al. [20] proposed
ShapeContextNet for point cloud recognition. Unlike pre-
vious works, the ShapeContextNet focuses on the concept
of shape context and develops a new representation of point
cloud. Moreover, they achieve competitive results on several
benchmark datasets.

B. VIEW-BASED METHODS
In view-based methods, input data are the views taken from
different angles of the 3D object, and these views can be
easily captured compared to other methods such as point
cloud structures. Recently, view-based methods attracted
more attention due to the 3D models can be simply realized
by the view representations [21]. And View representations
using deep learning schemes usually refers to the use of
mature models such as VGG [22], GoogLeNet [23] and
ResNet [24]. Based on the structure of MVCNN, a compact
shape descriptor can be extracted from multiple rendered
views of an object using CNN with a view-pooling layer.
MVCNN is significantly superior to the hand-crafted based
methods and 3D modelNets on the ModelNet40 dataset.
To take advantage of the structural information in the views
of 3D objects, Sfikas et al. [25] proposed a method for
capturing PANORAMA view features, which aims to achieve
3D model continuity and minimize data preprocessing by
constructing augmented 3D model representation. In [26],
an inductive multi-hypergraph learning algorithm is pro-
posed. The goal of this algorithm is to learn the optimal
projection ofmulti-model training data, and obtain the combi-
nation weight of optimal multi-hypergraph and the projection
matrices simultaneously. Besides, Bai et al. [27] proposed a
real-time 3D model search engine GIFT to accelerate with
the GPU and two inverted files. In several shape bench-
marks, GIFT is significantly better than the most advanced
methods in terms of retrieval accuracy. Kanezaki et al. [28]
using a cylindrical panorama around the main axis of the 3D
model. Feng et al. [29] proposed GVCNN which considers
capturing the hierarchical correlation of views to produce a

more discerning 3Dmodel description and also achieve better
performance. In [30], a siamese CNN-BiLSTM network was
proposed for 3D model representation learning. In order to
aggregate information from all the views, the bidirectional
LSTM is adopted after extracting the view features from
the CNN model. Finally, the contrastive loss function is
also employed for minimizing the distance of shapes with
the same label, otherwise maximizing. Inspired by n-gram
models in natural language processing, He et al. [31] pro-
posed VNN for effecient aggregating all the view features to
one discriminative shape descriptor. The spatial information
across multiple views is captured by VNN, which divides the
view sequence into a set of visual n-grams. VNN achieves
outperforming results on several benchmark datasets.

However, one thing we should pay more attention to is
that most of the existing multi-view based methods treat all
the views equally, ignoring the correlated and discriminate
information of multiple views, which limits the performance
for the classification and retrieval task. Moreover, compare
to the multi-view based methods employing the RNN archi-
tectures, our two-stream network not only use the LSTM
to aggregate all the view features but also fuse the visual
information from the CNN model and correlated information
from LSTM model for the 3D model recognition. The view
weights from the soft-attention module are also not just used
for the attentional pooling in the CNN model but effectively
work in the correlated information learning combined with
the LSTM. The advantages of the CNN and LSTM are both
leveraged to learn a more robust and discriminative shape
descriptor.

III. OUR APPROACH
In this section, we give a detailed introduction to our method.
The input of our two-stream network is a sequence of 2D
views, which are rendered images of 3D models captured by
predefined camera array. The camera array was set up around
the z-axis with the interval of 30◦. Therefore a sequence
of 12 views are rendered from the models, which is the input
of our network. The input views are firstly passed through
CNN to get the visual features. Then we feed the visual fea-
tures into two branches: the MVCNN branch and the Visual
Saliency branch. Due to the superiority of the sequential rep-
resentation learned from LSTM network structure, we utilize
two LSTM layers and soft-attention mechanism for feature
learning in our Visual Saliency branch. As the Fig.1 shown,
the first LSTM module and soft-attention mechanism are
adopted to generate the view weights for the attentional pool-
ing and the correlated information learning. Next the Visual
Saliency features from the Visual Saliency branch are fused
with the convoluted features for obtaining the final feature
of our network, which is used both for classification and
retrieval tasks. We give a detailed description according to
the following parts: (1) attention based view weight calcu-
lation; (2) view attention pooling; (3) final shape descriptor
generation.
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A. ATTENTION BASED VIEW WEIGHT CALCULATION
In order to use a set of views to represent each 3D model,
the NPCA [32] method and the visual tool developed by
OpenGL are used to normalize each 3D model and extract
a set of views from each 3D model, respectively. Here,
the extracted views wrapped around the model were extracted
through 30 degrees on the Z axis. Therefore, there are
12 views, which can be seen as a sequence of images,
are extracted to represent the visual and structure informa-
tion of the 3D model. Since ResNet18 [24] achieves rela-
tively better trade-off between accuracy and memory cost
among several classical CNN models (e.g., AlexNet [33],
VGG-Net [22]) [34], we then employ ResNet18 to extract
the feature vector of each view. With the residual connections
between standard convolution layers, ResNets can effectively
improve and accelerate the optimization process for very deep
networks. There are 17 convolutional layers conv1 - conv17
and a fully connected layer fc18 in ResNet18 network. In our
work, the output of conv17 is used as the feature vector for
each view with the dimension of 4096.

Based on the sequence structure of the views, we propose
a general approach based purely on neural networks to assign
the weight for each taken view. Since LSTM has been suc-
cessfully used in many fields [35]–[37], we utilize LSTM
and soft-attention mechanism to weight each visual feature
vector V = {v1, . . . , vn} in the Visual Saliency branch. This
approach has been used successfully by Xu et al. [38] for
exploiting spatial structure underlying an image. The reason
for adapting attention mechanism is to give importance to
those features which hold more significance. The multipli-
cation of this attention weights with the extracted CNN fea-
ture vectors are used for the view attention pooling in our
MVCNN branch. Next we will detail the calculation of our
attention based view weight.

After we got the visual feature vector V = {v1, . . . , vn},
a long short-term memory (LSTM) network is adopted in
our Visual Saliency model to exploit structure information of
these visual features. The details of the LSTM we use are
described in Zaremba et al. [39].

The LSTM mainly maintains the hidden state ht and an
internal memory state ct of an RNN. The correlation between
the hidden state ht and the memory state ct is computed by
an output gate:

ht = ot
⊙

tanh(ct ). (1)

where
⊙

represents the element-wise multiplication. We can
calculate the ot as follows:

ot = σ (Woht−1 + Uovi,t + bo) (2)

where σ is a logistic sigmoid function and vi,t is feature vector
of the i-th view in the t time. Wo,Uo, bo are respectively,
the weight matrices for the previous hidden state and the bias.
The current memory state ct is determined by the previous
memory state ct−1 and the updated memory c̃t :

ct = ft
⊙

ct−1 + it
⊙

c̃t (3)

where ft , it are, in order, the forget gates and the input gates,
which are computed by:

ft = σ (Wf ht−1 + Uf vi,t + bf )

it = σ (Wiht−1 + Uivi,t + bi) (4)

The current updated memory c̃t is computed by:

c̃t = tan(Wcvi,t + Ucht−1 + bc) (5)

where Wc,Uc, bc are, respectively represents the weight
matrices and the bias.

In order to discard irrelevant information and minimize
the task complexity, attention mechanism is widely used in
lots of fields, which makes neural networks focus on some
particular portions of the input image. Therefore, in this work,
soft attention mechanism is employed to compute the weight
αi based on the previous hidden state ht−1.

ei = w>tanh(Wavi,t + Uaht−1 + ba)

αi = exp{ei}/
n∑
j=1

exp{ej}

n∑
i=1

αi = 1 (6)

where w,Wa,Uh and ba are the parameters that are estimated
together with the whole network.

B. VIEW ATTENTION POOLING
Unlike themax pooling used inMVCNN [1], we consider that
a soft attention pooling will help the network achieve better
representations of 3D models. According to the above steps,
we have calculated soft-attention weight αi, which reflects
the relevance of the i-th temporal feature in the input images.
In ourMVCNN branch, we utilize the average of the dynamic
weighted sum of the multi-view feature vectors such that

ψ(V ) = (
N∑
i=1

αivi)/N (7)

where N is the number of input views and V = {v1, . . . , vn}
is the visual feature sets of the 3D object. After attention
pooling, the output ψ(V ) then passed through the CNN2 to
obtained the feature vector of our MVCNN branch.

C. FINAL SHAPE DESCRIPTOR GENERATION
As stated in [40], LSTMs can be trained to link time inter-
vals which are over 1000 steps even for noisy sequences
without losing short-time-lag capabilities. Hence we can
easily extract the 3D model representation, including the
holistic and correlation information, from the last cell state
which takes into account all the views in a 3D model.
Besides, MVCNN had proved its effectiveness in utilizing
the visual information to address the 3D model analysis
problem. We note that not all the views are equally important
for discriminating a particular model and therefore attention
mechanism helps to calculate the relative importance of the
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FIGURE 2. The red value is the highest attention weight, which means the characteristic view is selected by the soft-attention model.

3D model views by assigning weights to all the views, which
is making the model focus on more representative extracted
views of the 3D objects. To both retain the advantages of
these two models, a comprehensive feature representation
is obtained from a concatenation of feature vectors form
MVCNNmodel and Visual Saliencymodel respectively. This
is our final shape descriptor of the entire sequence of views
for the classification and retrieval task.

IV. EXPERIMENTS
In this section, the experiment for proving the reasonableness
of our design network is firstly provided, and then we com-
pare the proposed network with the current effective methods
to verify the superiority of our method. We also investigate
the influence of two important parameters, including the input
views’ order and number, on the performance of 3D model
recognition. The experiments are performed on two public
datasets, ModelNet40 and ShapeNetCore55. Next, we will
present the related experiments, results and analysis in detail.

A. DATASET
The ModelNet40 and ShapeNetCore55 datasets are used to
evaluate the performance of the proposal method on the 3D
model recognition task.
• ModelNet40 is a subset of ModelNet, which consists
of 12,311CADmodels and thesemodels are divided into
40 categories. In ModelNet40, the training subset and
test subset respectively consist 9843 and 2468 models,
These models ware cleaned manually, but pose normal-
ization was not performed.

• ShapeNetCore55 is a subset of ShapeNet, which con-
tains about 51,300 3D models in 55 common categories,
and each category is subdivided into several subcate-
gories. There are three subsets in the ShapeNetCore,
consisting of 70%/10%/20% training / validation /
testing splits. Two dataset versions of ShapeNetCore
are available: consistent alignment (regular dataset), and
a more challenging dataset where the model is dis-
turbed by random rotation. The models in ShapeNet-
Core55 dataset are provided in OBJ format.

Due to the 3Dmodels are represented as polygonal meshes
in these datasets, following the MVCNN [1], we render them
into multiple views to obtain the multi-view training and
testing sets. There are 12 view images are rendered for each
model by placing 12 virtual cameras around the mesh. These
virtual cameras were pointed towards the centroid of the
model, and elevated 30 degrees from the ground plane.

B. EVALUATION CRITERIA
In our experiments, the classification accuracy is employed
to evaluate the classification performance of the proposed
method. As for the 3D model retrieval task, several evalua-
tion metrics are utilized, including Precision Recall Curve,
NN, FT, ST, F-Measure, DCG, ANMRR, mAP [41]. Here,
the lower ANMRR value means better retrieval performance,
others the higher the better.

• The Precision-Recall Curve (PR-Curve) can compre-
hensively demonstrate retrieval performance. To change
the threshold, which is used to distinguish the
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irrelevance and correlation in the object retrieval, it can
jointly consider the accuracy and recall metrics.

• The Nearest Neighbor (NN) indicates the percentage of
the closest matching objects.

• The First Tier (FT) is calculated by the recall of the top N
matching results, where the N is the number of relevant
3D objects in the dataset.

• The Second Tier (ST) employs the top 2N matching
results to calculated the value, which is similar to the FT.

• The F measure (F) is a synthetical measurement, which
considers both precision and recall based on the top
20 returned results.

• The Discounted Cumulative Gain (DCG) is a statistic
that give more attention on the top matching results.

• The Average Normalized Modied Retrieval Rank
(ANMRR) presents the ranking performance of the
ranking list, which takes the ranking information of the
relevant objects into account from the most frequently
retrieved objects.

• The Mean Average Precision (mAP) is a ranking mea-
sure, which can solve the single point value limitation of
Precision, Recall and F-measure.

C. IMPLEMENTATION DETAILS
Our method is tested on an Intel(R) Core(TM) i7-9700K
CPU @ 3.60GHz CPU system, with 32G RAM and a
GeForce GTX1080 Ti GPU, with 12G RAM. We code in
Matlab to extract the view images on an Intel(R) Core(TM)
i5-6500 CPU @3.2GHz, with 8G RAM. The visual repre-
sentation of the model with 12 viewpoint costs about 2.8s,
while the images are sized to 600 × 600 pixels. The model
of MVCNN, pre-trained by ImageNet1K, is utilized in our
work and fine-tuned on all view images of models in the
training set. Proposed network is fine-tuned on ModelNet40,
which consits 9843 models in the trainning set and there are
12 extracted views for each model.

We utilize PyTorch platform to make all experiments.
As for the computational cost, we use GTX1080 Ti GPUs
and accelerate the training process by the CUDA instruction
set on the GPU. It takes about 30 minutes to train each epoch
of the whole network. The learning rate is set as 0.0001 at the
beginning of joint training and decreases to 0.000001 after
about 36th epochs with the batch size set as 16. We obtain
the best result of the whole network at about the 36th epoch
of joint training. Finally, we make a discussion on the view
order and number. Meanwhile, we choose the best result to
compare with current state-of-the-art methods.

D. EXPERIMENT FOR VALIDATING THE
EFFECTIVENESS OF OUR METHOD
To validate the effectiveness of our method, we design the
experiment for every components of our network. As the
Tab. 1 shown, we use different parts of our network to per-
form the 3D model classification on the ModelNet40 dataset.
The attention weight is employed to guide the visual fea-
tures pooling in the MVCNN model and its effectiveness

TABLE 1. Comparison on the different components of our network for
classification task on the ModelNet40 dataset.

is demonstrated by the related experimental results, which
are listed in the first row and second row of Tab. 1.
‘‘MVCNN’’ denotes the typical view based method proposed
by Su et al. [1]. And ‘‘MVCNN + attention weight’’ is
a modified version of MVCNN, which replaces the view
pooling part of the typical MVCNN method with the view
attention pooling part. Obviously, the classification result of
typical MVCNN model has the lower accuracy comparing
to MVCNN model with the attention weights. The result
demonstrates our attention weight can make the model focus
on more representative views to obtain a better performance
on the 3D model recognition. In our proposed method,
we introduce theVisual Saliencymodel, including two LSTM
layers and a soft-attention network, to consider the struc-
ture and correlation information from the multiple extracted
views and guide the visual features pooling in the MVCNN
branch. As Fig.1 shown, from Visual Saliency model, the last
hidden state of the second LSTM layer are used as the Visual
Saliency Feature for the classification task and obtaining an
accuracy of 91.12%. Compare to the typical MVCNNmodel,
Visual Saliency model wins by 1.22% more gains in terms of
classification accuracy, which means the design of seeming
the extracted views as a view sequence and exploiting their
structure information is reasonable and feasible for 3Dmodel
recognition. Our method, which both retain the correlated
information and visual information from multiple extracted
views, outperforms the other parts of our network, bringing
a 2.79%, 0.96%, 1.57% improvement over each part of our
network respectively. From the above experiment, the experi-
mental results demonstrate our proposed network architecture
is effective to obtain a better 3D model representation.

E. COMPARISON WITH STATE-OF-THE-ART METHODS
ON THE MODELNET40 DATASET
In order to validate the superiority of the proposed network,
3D model classification and retrieval experiments have been
conducted on the ModelNet40 dataset. As for the dataset,
we follow the same training and test split setting in [2].
In the Tab. 2, ‘‘Ours(GoogLeNet)’’ means we utilize the
GoogLeNet to extract the features of views, which are used as
the input of our two-stream network. In experiments, we have
compared our two-stream model with various models based
on different representations, including volumetric basedmod-
els (3D modelNets by Wu et al. [2]), hand-craft descriptors
for multi-view data (SPH by Kazhdan et al. [42] and LFD
by Chen et al. [43]), deep learning models for multi-view
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TABLE 2. Comparisons of classification and retrieval experimental results on the ModelNet40 dataset.

data (MVCNN by Su et al. [1], MVCNN-MultiRes by
Qi et al. [7], CNN-BiLSTM by Dai et al. [30], VNN by
He et al. [31],MHBNbyYu et al. [47], TCL byHe et al. [48],
RED by Bai et al. [49] and LMRL by Ma et al. [50]),
point cloud based models (PointNet by Qi et al. [3], Point-
Net++ by Qi et al. [12], Kd-Network by Klokov et al. [17],
PointCNN by Li et al. [45] and DGCNN byWang et al. [19])
and panorama views based model(PANORAMA-NN by
Sfikas et al. [46]).

From the experimental results in Tab. 2, we can see
‘‘Ours(GoogLeNet)’’ outperforms all the comparison meth-
ods in terms of classification accuracy on the ModelNet40
dataset. Note that, the classification results for CNN-
BiLSTM [30], VNN [31] and RED [49] are not pro-
vided in their papers. MHBN achieves the second best
classification performance, it not only uses the informa-
tion of extracted views but also utilizes the depth images
of each model for boosting the performance, resulting in
more complicated network architecture. When compared to
‘‘MVCNN(GoogLeNet)’’, two-stream network outperforms
it by 1.2% on the classification task, which can be attributed
to the exploitation of the correlated information among the
views. For the 3D model retrieval task, we employ the
Euclidean distance to rank the reference models in our
method and the above referenced methods are set as the
comparison to our network. As Tab. 2 presented, our method
outperforms MVCNN, which is the baseline of our net-
work, and achieves increments of 7% in mAP on the Mod-
elNet40 dataset. This result shows the correlation among the

FIGURE 3. Precision-recall curves for our network and other methods on
the ModelNet40 dataset.

views can contribute to obtaining the discriminative shape
descriptor. However, our retrieval performance is not the
best compare to the recent view-based 3D model retrieval
methods, such as VNN [31] and TCL [48]. VNN achieves the
best retrieval result for a mAP of 89.3%, it captures the local
spatial information across the extracted views by dividing
the view sequence into a set of visual n-grams. Moreover,
VNN introduces an attentional feature aggregation module,
which allows the network to focus on the more discriminate
view features. TCL [48] achieves the second best retrieval
result with a mAP of 88%, which demonstrates TCL can
effectively further enhance the discriminate power of the
features. For each class of 3D models, TCL can learn a center
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FIGURE 4. Illustration of the 3D model retrieval results on the ModelNet40 dataset. The retrieved top 10 models are selected according to
the pairwise similarity. From left to right, the query 3D models are listed on the first left column, and the ranked results are listed on the
right side. The blue and orange color indicate the correc and incorrect retrieval models, respectively.

TABLE 3. Retrieval accuracy measured via mAP, F-score, and NDCG on ShapeNetCore55 data set.

and require that the distances between samples and centers
from the same class are closer than those from different
classes to further boost the retrieval performance. Ourmethod
with GoogLeNet achieves the third best retrieval performance
among these comparison methods for a mAP of 87.2%. Other
than this, from Tab. 2, bidirectional LSTM is employed in
CNN-BiLSTM [30] and LMRL [50] to aggregate themultiple
view features and obtains better performance than typical
pooling methods. RED [49] also achieves competitive perfor-
mance on the ModelNet40 dataset, it introduces an automatic
weight learning paradigm to surpass the negative impacts of
noisy similarities.

As Fig.3 presented, the precision-recall curves we achieved
on the ModelNet40 dataset demonstrates the effectiveness of
our method. Obviously, when the retrieval recall is under 0.9,
the highest retrieval precision and the best overall retrieval
performance among all themethods have achieved by the pro-
posed network. These results have demonstrated the promis-
ing discriminative capacity of our method for 3D model
retrieval task. As Fig.4 presented, there are several retrieval

TABLE 4. Performance(%) on ModelNet40 with different view numbers.

examples on the ModelNet40 dataset and we can see that the
highly relevant 3D models are retrieved for the query models
by our method.

F. RETRIEVAL RESULTS ON THE
SHAPENETCORE55 DATASET
On the ShapeNetCore55 dataset, there are two kinds of
versions of the above evaluation metrics to be used in the
experiment. The macro-averaged version is used to pro-
vide the unweighted average of the entire dataset and the
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TABLE 5. Performance (%) with different view orders on the ModelNet40 dataset.

micro-averaged version is used to adjust the size of the model
categories to provide a representative performance metric
across categories. In addition, on the official website of the
SHREC competition, the evaluation code for all these indica-
tor calculations are provided by the organizer.

The retrieval experimental results on the ShapeNetCore
dataset, including the pose normalized and perturbed ver-
sions, are provided in Table.3. We compare our method with
othermethods, which have demonstrated their superiority and
exhibited higher performance in the ShapeNetCore55 tracks.
According to listed results in Table3, for the macro-averaged
version and micro-averaged version metrics, the proposed
method outperforms other methods by a large margin, except
for the RotationNet. RotationNet achieves the highest F-score
on the both Micro-averaged version and macro-averaged
version metrics, it utilizes a partial set of the extract view
images to jointly estimate the pose and category of the model.
Although it achieves higher score in the term of F-score
compared to the proposed method, it ignores the correlated
information among the extracted views, which has been taken
into consideration in our method. On the other two evaluation
metrics, mAP and NDCG, we achieve the best performance,
which further demonstrates the superiority of the proposed
method.

G. SENSITIVITY ANALYSIS ON VIEW NUMBER
Due to the number of extracted view images may have direct
influence on the 3D model recognition performance, we per-
formed comparative experiment to select the best number
of the view images. Concretely, a virtual camera array is
set up around the z-axis with the intervals of angle θ . The
θ is set to {180◦, 90◦, 60◦, 45◦, 36◦, 30◦, 18◦} respectively,
whichmeans there are {2, 4, 6, 8, 10, 12, 20} view images are
generated for each model.

The experimental results are presented in Table.4. As the
number of view images increasing, the performance of our
network keeps improving until the view number increase
to 12. At the beginning, there are only 2 view images are
used as the input of our network, which do not provide
enough information for the proposed network to effectively
learn the representation of the 3D model. So before the opti-
mal number coming, the performance of proposed network
can be improved by increasing the number of view images.
As shown in Table 4 and Fig.5, when the number of views
increased over 12, excessive views images produce redundant
information and lead to worse performance. Compared with
other number of view images, when view number is set to 12,
the performance is the best so we select the optimal number
as 12.

FIGURE 5. Precision-recall curves of the experiment on the different view
numbers, which is conducted on the ModelNet40 dataset.

H. SENSITIVITY ANALYSIS ON VIEW ORDER
Intuitively, the order of input views can directly influence
the effect of 3D model feature learning. To demonstrate the
robustness of our network, we conduct the experiment on
the ModelNet40 dataset by upsetting the view order number
of multi-view sequence 50 times in the testing procedure.
The related retrieval and classification results are presented
in Table 5. We can observe that the result of disordered
input views is even better than ordered input views method’s
result. The reason of this consequence can be summarized
to the parameter w> from the Equation 6 will learn more
structure information from the taken views when the input
views is disordered. Obviously, according to these results,
our network has been demonstrated it can adaptively calculate
the importance of individual views, and with these informa-
tion, the structure and visual information from multiple taken
views are well exploited. So, for the 3D model representation
learning, proposed method can be free of the camera setting
and achieve robust performance.

V. CONCLUSION
In this paper, we have presented a novel two-stream net-
work based on visual differentiation information of multiple
views, consisting of a MVCNN model and a Visual Saliency
model. The MVCNN model extracts the view information
from the taken views, and the Visual Saliency model defines
the weight of views based on the similarity and differentia-
tion information of multiple views. Especially, the weight of
views defined by the Visual Saliency model can effectively
be used to guide the visual information fusion in MVCNN
model. Here, the correlation information among the views
for each model is taken into consideration in the learning
step. Finally, the early-fusion method is employed to fuse
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the feature vectors fromMVCNNmodel and Visual Saliency
model respectively, in order to generate the shape descriptor
for 3D model recognition and retrieval. Compared with cur-
rent effective methods, our method not only utilizes the visual
information from the taken views, but also takes the corre-
lation information into consideration for 3D model recogni-
tion. Experimental results on the two public model dataset
have demonstrated that the effectiveness of the proposed
network, which means the correlation information is cru-
cial for view-based 3D model recognition methods. Related
experimental results also showed that the proposed method
can achieve a robust and discriminative representation for the
3D model.
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