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With the explosive growth of mobile applications, mobile devices need to be equipped with abundant resources to process massive
and complex mobile applications. However, mobile devices are usually resource-constrained due to their physical size. For-
tunately, mobile edge computing, which enables mobile devices to o�oad computation tasks to edge servers with abundant
computing resources, can signi�cantly meet the ever-increasing computation demands from mobile applications. Nevertheless,
o�oading tasks to the edge servers are liable to su�er from external security threats (e.g., snooping and alteration). Aiming at this
problem, we propose a security and cost-aware computation o�oading (SCACO) strategy for mobile users in mobile edge
computing environment, the goal of which is to minimize the overall cost (including mobile device’s energy consumption,
processing delay, and task loss probability) under the risk probability constraints. Speci�cally, we �rst formulate the computation
o�oading problem as aMarkov decision process (MDP).­en, based on the popular deep reinforcement learning approach, deep
Q-network (DQN), the optimal o�oading policy for the proposed problem is derived. Finally, extensive experimental results
demonstrate that SCACO can achieve the security and cost e�ciency for the mobile user in the mobile edge
computing environment.

1. Introduction

With the increasing popularity of mobile devices (e.g., smart
phones and tablets), the number of various mobile appli-
cations (i.e., virtual reality (VR) and face recognition) is
explosively growing [1]. To process such a large number of
complex mobile applications e�ciently, mobile devices need
to be equipped with considerable resources (i.e., high
computing capacity and battery power) [2, 3]. Unfortu-
nately, due to the limited physical size of mobile devices,
they are usually resource-constrained. ­e con£ict between
the resource demand for executing complex tasks and the

limited resource capacity of mobile devices impose a big
challenge for mobile application execution, which drives the
transformation of computing paradigm [4].

To reduce this con£ict, mobile edge computing has
emerged as a promising computing paradigm with the ob-
jective of bringing the computing and storage capacities close
to mobile devices [5, 6]. Within one-hop communication
range of mobile devices, there are a number of edge servers
who have enormous computation and storage resources.
­erefore, mobile devices can o�oad computation tasks to
edge servers directly through wireless channels [7], thereby
signi�cantly meeting the ever-increasing computation
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demands from mobile applications, reducing their processing
delay, and saving the mobile devices’ energy consumption.

Despite its advantages, computation task offloading via
mobile edge computing inevitably encounters two chal-
lenges as follows: one is the offloading environmental dy-
namics, such as the time-varying channel quality and the
task arrival, which can impact the offloading decisions. And
the other is the security. According to several surveys, se-
curity is one of the critical issues in mobile edge computing
[8–19]. Due to the open nature of the mobile edge com-
puting environment, these tasks offloaded to the edge servers
are susceptible to hostile attacks from outside. For example,
the offloaded computation tasks from the mobile device to
the edge servers can be intentionally overheard by a mali-
cious eavesdropper. Hence, it needs to employ various types
of security services to effectively defend against the hostile
attacks and protect these tasks. However, using security
services inevitably incurs lots of extra security time and
security workload, which will increase the mobile device’s
energy consumption and task’s processing time, and thereby
influencing the offloading decisions. -erefore, it is a big
challenge to design a proper task offloading policy to op-
timize the long-term weighted cost of mobile device’s energy
consumption, task processing delay, and number of drop-
ping tasks while satisfying risk rate constraint.

To meet the aforementioned challenges, we propose a
security and cost-aware computation offloading (SCACO)
strategy in themobile edge computing environment, the goal
of which is to minimize the long-term cost under the risk
rate constraint. More specifically, we formulate the com-
putation offloading problem as a Markov decision process
(MDP). Our formulated offloading problem is a high-di-
mensional decision-making problem. -e DQN algorithm
has achieved excellent performance in solving this kind of
problem. To achieve this, a deep Q-network- (DQN-) based
offloading scheme is proposed. Figure 1 illustrates a DQN
framework for computation task offloading in mobile edge
computing. As shown in Figure 1, the environment state
which consists of the number of arriving tasks, the mobile
device and edge servers’ execution queue states, and the
channel quality states can be observed. Based on the current
state, an optimal action, e.g., how many tasks should be
assigned to execute locally, how many tasks should be off-
load to edge servers, and which security level should be
employed, is chosen by the agent. After taking an action at
current state, the reward can be calculated, and the current
state, the action taken, and the reward are stored into replay
memory. -e main contributions of this paper can be
summarized as follows:

(i) We select appropriate security servers to guarantee
the offloaded tasks’ security. -e security overhead
model [20] is exploited to quantify the security time.
Based on it, the security workload can be measured.
In our architecture, the total workload of the off-
loaded task consists of task execution workload and
security workload.

(ii) We formulate the security-aware task offloading
problem as an infinite Markov decision process with

the risk rate constraint, the main goal of which is to
minimize the long-term computation offloading
costs while satisfying the risk rate constraint in the
dynamic environment.

(iii) We propose a SCACO strategy based on the DQN
algorithm to solve the proposed formulation. To
demonstrate the efficiency of the SCACO strategy
and the impact of the security requirement, we
conduct extensive experiments, with respect to
(w.r.t.) various performance parameters (such as the
task arrival rate, the task workload, the risk coef-
ficient, and the risk rate). -e experimental results
demonstrate that the SCACO strategy can minimize
the long-term cost while satisfying the risk rate
constraint.

We organize this paper as follows: Section 2 summarizes
the related work. Section 3 describes the system models.
Section 4 formulates security-aware computation offloading
problem formulation. Section 5 describes the SCACO
strategy based on the DQN algorithm. Section 6 describes
the experimental setup and analyzes experimental results.
Section 7 concludes this paper and identifies future
directions.

2. Related Work

To meet the quality of service for different types of mobile
applications, the computation tasks can be offloaded to the
edge servers with sufficient computation capacity. Accord-
ingly, an increasing amount of research has focused on the
problem of computation offloading in mobile edge com-
puting. Specifically, in [21], an efficient one-dimensional
search algorithm is designed to minimize the computation
task scheduling delay under the power consumption con-
straint. In [2], a computation task offloading optimization
framework is designed to jointly optimize the computation
task execution latency and the mobile device’s energy. In [2],
an online dynamic task offloading scheme is proposed to
achieve a trade-off between the task execution delay and the
mobile device’s energy consumption in mobile edge com-
puting with energy harvesting devices. In [22], a suboptimal
algorithm is proposed to minimize the maximal weighted
cost of the task execution latency and the mobile device’s
energy consumption while guaranteeing user fairness. In
[23], a workload allocation scheme is proposed to jointly
optimize the energy consumption and the execution delay in
mobile edge computing with grid-powered system. How-
ever, all the above works mainly focus on optimizing the
one-shot offloading cost and fail to characterize long-term
computation offloading performance. Accordingly, these
offloading schemesmay not suit for some applications which
the long-term stability is more important than the profits of
handing one task.

To optimize the long-term computation offloading
performance, a lot of related works have been done. In
particular, in [24], an efficient reinforcement learning-based
algorithm is proposed to minimize the long-term compu-
tation task offloading cost (including both service delay and
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operational cost) in energy harvesting mobile edge com-
puting systems. In [25], a deep Q-network-based strategic
computation offloading algorithm is proposed to minimize
the long-term cost which is the weighted sum of the execution
delay, the handover delay, and the computation task dropping
cost. In [26], the Lyapunov optimization-based dynamic
computation offloading policy is proposed to minimize the
long-term execution latency and task failure for a green
mobile edge computing system with wireless energy har-
vesting-enabled mobile devices. In [27], the Lyapunov opti-
mization method is utilized to minimize the long-term
average weighted sum energy consumption of the mobile
devices and the edge server in a multiuser mobile edge
computing environment. In [28], the game theory and re-
inforcement learning is utilized to efficiently manage the
distributed resource in mobile edge computing. However,
none of the above work considers the impact of security issue
on computation offloading. In fact, security cannot be ignored
because it is a key issue in mobile edge computing. -erefore,
the above schemes are not suitable for security-aware dy-
namic computation offloading in mobile edge computing.

With the escalation of the security threatens of data in
the cloud, mobile cloud environments, and mobile edge
computing [8–19], some measures have been implemented
to protect security-critical applications. Specifically, in [29],
a task-scheduling framework with three features is presented
for security sensitive workflow framework. In [30], an SCAS
scheduling scheme is proposed to optimize the workflow
execution cost under the makespan and security constraints
in clouds. In [31], an SABA scheduling scheme is designed to
minimize the makespan under the security and budget
constraints. In [32], a security-aware workflow scheduling
framework is designed to minimize the makespan and ex-
ecution cost of workflow while meeting the security re-
quirement. However, to the best of our knowledge, all of the
above methods are mainly designed for the workflow
scheduling in the cloud computing or mobile cloud com-
puting environment. -ey are not suitable for computation
offloading in mobile edge computing. In [17], a deep-
learning-based approach is proposed to detect malicious
applications on the mobile device, which greatly enhances
the security of mobile edge computing. However, this paper

mainly focuses on the detection of security threats. In [33], a
joint optimization problem which includes the secrecy
provisioning, computation offloading, and radio resource
allocation is formulated, and an efficient algorithm is pro-
posed to solve this joint optimization problem. However,
this paper failed to optimize the long-term computation task
offloading cost.

All the above studies have focused on the security
problem of workflow scheduling. Little attention has been
paid to the effect of the security problem of task offloading
on the long-term offloading cost. Motivated by that, in this
paper, we mainly focus on security and cost-aware dynamic
computation offloading in mobile edge computing. We try
to minimize the long-term computation offloading cost
while satisfying risk rate constraint.

3. System Models

In this section, we first provide an overview of the security-
aware mobile edge computing model. -en, the security
overhead model and network and energy model are pre-
sented. At last, we formulate the problem of security-aware
computation task offloading. To improve the readability, the
main notations and their semantics used in this paper are
given in Table 1.

3.1. Mobile Edge ComputingModel. As depicted in Figure 2,
we consider in this paper a mobile edge computing system
consisting of a single mobile user and n edge servers. -e
mobile user can generate a series of independent compu-
tation tasks [34, 35] which need to be scheduled to execute
locally or to execute remotely. Due to the mobile device’s
limited computing resource and battery capacity, all com-
putation tasks cannot be executed locally within a timely
manner. -erefore, a part of these can be offloaded to n edge
servers with relatively rich resources. -ese offloaded tasks
are first stored in a dedicated executing queue and then are
executed sequentially. -e system time is logically divided to
equal length time slots, and the duration of each time slot is
Tslot (in seconds). For convenience, we denote the index sets
of the time slots as τ ∈ T � 0, 1, . . .{ }. -e value of Tslot is

Agent
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�e number of arrival tasks
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Observation of MD and eNBs status

eNB1 eNBn
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�e MD’s execution queue
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�e channel quality state

Objective
environment

Figure 1: DQN framework for computation task offloading in mobile edge computing.
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usually decided by the channel coherence time. It means that
the channel remains static within a time slot but varies
among different time slots [26]. At the beginning of each
time slot, the user makes an optimal offloading decision.

-e mobile device can be denoted by a triple
MD � 〈fu, Nu, Pu〉, where fu denotes the mobile device’s
CPU cycle frequency, Nu denotes the number of the mobile
device’s processor cores, and Pu denotes the mobile device’s
power. Especially, Pu can be further represented by a tuple
Pu � 〈Pe

u, Ptx
u 〉, where Pe

u and Ptx
u denote the mobile device’s

computation power (in Watt) and transmitting power, re-
spectively.-emobile device has an execution queue with its
size |Qe

u|. If the queue is already full, the new arrival tasks will
be dropped.

-e computation task model widely used in the existing
literature [34, 35] is adopted in this paper. According to it, a
computation task can be abstracted into a three-field no-
tation t � (W, Dtx, Drx), in which W denotes the task
computation workload (in CPU cycles per bit), Dtx denotes
the task input data size (in MB), and Drx denotes the task
output data size. In addition, we assume that the

computation tasks’ arrival process for the mobile device MD
follows a Poisson distribution with a parameter λtask.

-e set of n edge servers can be denoted by
eNB � eNB1, . . . , eNBi, . . . , eNBn􏼈 􏼉, where eNBi denotes
the ith edge server. Each edge server eNBi has different
configurations, such as the number of processor cores and
the processor frequency. We use a two tuple
eNBi � 〈fc,i, Nc,i〉 to represent the edge server eNBi, where
fc,i denotes its processor frequency and Nc,i denotes the
number of processor cores. Each edge server has an exe-
cution queue with the size |Qi

c|. When the edge server re-
ceives the offloaded tasks from the mobile device, it firstly
stores the tasks in its execution queue and then executes
them sequentially. Let μi

c denote the task processing rate of
the ith edge server. -erefore, μi

c can be calculated by the
following equation:

μi
c �

fc,i

W
. (1)

3.2. Security Overhead Model. -e computation tasks off-
loaded to the edge servers are confronted with security
threats. Fortunately, confidentiality service and integrity
service can guard against these common security threats
[29–33, 36, 37]. Confidentiality service can protect data from
stealing by enciphering methods. Meanwhile, integrity
service can ensure that data are not tampered. By flexibly
selecting these two security services, an integrated security
protection is formed to protect against a diversity of security
threats. Based on these above services, the offloading process
of a task with security protection is shown in Figure 3. We
can observe from Figure 3 that confidential service (denoted
as E) is first employed to encrypt the offloaded task. -e
security levels and processing rates of cryptographic algo-
rithms for confidential service [20, 30, 36, 37] can be found
in Table 2. -en, to protect the offloaded computation task
from alteration attacks, integrity service (denoted as H) is
successively employed to implement a hash algorithm to it.
-e security levels and processing rates of hash functions for
integrity service [20, 30, 36, 37] can be seen in Table 3. After
the encrypted task is delivered to the ith edge server, it is
firstly decrypted (denoted as DE) and its integrity is verified
(denoted as IV), and then it is executed, and finally the
computation result is sent to the mobile device.

Each offloaded computation task may require the con-
fidentiality service and integrity service with various security
levels. For the sake of simplicity, let cf and ig represent the
confidentiality service and integrity service, respectively. Let
slc,i � slcfc,i(τ), sligc,i(τ)􏽮 􏽯 to be the set of security levels of task t

offloaded to the ith edge server, where slcfc,i(τ) represents the
security level of confidentiality service and sligc,i(τ) represents
the security level of integrity service. Security service incurs
sometime overhead. According to [20], the total encryption
overheads of task t offloaded to the ith edge server can be
calculated by the following equation:

T
E
c,i � 􏽘

type∈ cf ,ig{ }

k · Dtx

fu · Nu · V sltypec,i􏼐 􏼑
, (2)

…

Generated data

… …

Edge server’s 
execution queue

!"#$%(' )
�e arrival task

Figure 2: Computation task offloading framework with multiple
edge servers.

Table 1: Notations.

Symbols Definition
n Number of edge servers
λtask Tasks’ arrival rate
Tslot -e duration of the time slot
Ri -e link rate between MD and edge server eNBi

slc,i

-e set of security levels of task t offloaded to the ith
edge server

Qarr(τ) -e number of arrival tasks at the τth time slot
Qe

u(τ) -e user executing queue’s state at the τth time slot

Qe
c(τ)

-e edge server executing queue’s state at the τth time
slot

C(τ) -e immediate cost at the τth time slot

E(τ)
-e immediate energy consumption at the τth time

slot
T(τ) -e immediate delay at the τth time slot
D(τ) -e number of dropping tasks at the τth time slot
Pmax -e risk probability constraint of each offloaded task
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where k � 2.2 and V(slcfc,i) and V(sligc,i) denote the processing
rates of the security levels slcf and slig, respectively. -e total
decryption overheads of the offloaded task t in the ith edge
server can be computed by the following equation:

T
DE
c,i �

fu · Nu · TE
u

fc,i · Nc,i

. (3)

3.3.Workload Shapingwith SecurityGuarantee. -e security
services incur not only time overhead but also security
workload.-e security workload of task t offloaded to the ith
edge server is incurred by encrypting it in mobile device and
decrypting it in edge server. Based on the security time
overhead of task t, the security workload which is incurred
by encrypting task t in themobile device can be computed by
the following equation:

SWE
c,i(t) � T

E
c,i · fu · Nu. (4)

-e security workload which is incurred by the
decrypting task t in the ith edge server can be computed by
the following equation:

SWDE
c,i Dtx( 􏼁 � T

DE
c,i · fc,i · Nc,i. (5)

Based on the security services introduced above, we
further quantitatively calculate the risk probability of task t

with different security levels. Without loss of generality, we
assume that the distribution of risk probability follows a
Poisson probability distribution for any given time interval.
-e risk probability of an offloaded computational task t is
related to the set slc,i � slcfc,i(τ), sligc,i(τ)􏽮 􏽯 of security levels. Let
P(slkc,i) denote the risk probability of an offloaded task which
employs either of the two security services. P(slkc,i) can be
denoted by the following equation [38, 39]:

P slkc,i􏼐 􏼑 � 1 − exp − λk 1 − slk( 􏼁( 􏼁, k ∈ cf , ig􏼈 􏼉. (6)

-e risk probability P(t) of an offloaded task t which
employs these two security services with different levels can
be computed by the following equation:

P(t) � 1 − 􏽙

k∈ cf ,ig{ }

1 − P slkc,i􏼐 􏼑􏼐 􏼑.
(7)

Given the risk probability constraint of each offloaded
computational task is Pmax, the risk probability P(t) must
meet the following constraint:

P a
k
c􏼐 􏼑≤Pmax. (8)

In order to minimize the security workload while sat-
isfying security requirement, it is a critical problem to select
the levels of security services for each task.We formulate this
problem as follows:

minimize SW(t) � SWE
u(t) + SWDE

c,i (t)

subject to (8).
(9)

As shown in Tables 2 and 3, the levels of each security
service are discrete. For a task t, there are 5 × 5 types of
security service composition. Hence, we can traverse these
compositions to find the optimal service levels.

3.4. Communication Model. -e computation tasks off-
loaded from the mobile device to edge servers are performed
by wireless channels. Due to user’s mobility, the wireless
channel gain state is dynamically changing at each time slot,
which induces dynamic change of wireless channel trans-
mission rate. Let Ri(τ) denote the transmission rate of
wireless channel (i.e., data transmission capacity) from the
mobile device to the ith edge server eNBi in the τth time slot,
which is given as follows:

Ri(τ) � Bilog2 1 +
PuGi

σ2
􏼒 􏼓, ∀i ∈N, (10)

where Bi is the wireless channel bandwidth of the ith edge
server, Pu is the transmission power of the mobile device, σ2
is the Gaussian white noise power, and Gi denotes the
wireless channel gain of eNBi.

3.5. ProblemStatement. -e computation offloading process
can be formulated as an infinite Markov decision process. At
the beginning of each time slot, an offloading decision is

Table 2: -e encryption algorithms for confidential service.

Encryption algorithms slcf: security level V(slcf ): processing
rate (Mb/s)

IDEA 1.0 11.76
DES 0.85 13.83
Blowfish 0.56 20.87
AES 0.53 22.03
RC4 0.32 37.17

Table 3: -e hash functions for integrity service.

Hash functions slcf : security level V(slcf ): processing
rate (Mb/s)

TIGER 1.0 75.76
RipeMD160 0.75 101.01
SHA-1 0.69 109.89
RipeMD128 0.63 119.05
MD5 0.44 172.41

E H

DE IV

...αi βi

βi ...

ti

APi 

Figure 3: -e task execution process with security services.
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made based on the current system state, which consists of the
number of arrival tasks, the remaining number of tasks in
the user’s executing queue, the transmission rates between
user and n edge servers, and the remaining number of tasks
in n edge servers’ executing queues. -e offloading decision
mainly determines the number of tasks assigned to execute
locally and the number of tasks offloaded to different edge
servers. To protect the offloaded computation tasks from
malicious attacks, security services need to be employed.
Security services incur time overheads and security work-
load. Hence, the objective of this paper is to minimize the
long-term cost while meeting the risk probability constraint.

4. Security-Aware Computation Offloading
Problem Formulation

In this section, we first define the state and action spaces.
-en, the system state transition and reward function are
derived. Finally, we define the objective and constraints.

4.1. State Space. At the τth time slot, the system state for the
security-aware computation offloading problem can be
denoted by the following equation:

s(τ) � Qarr(τ),Q
e
u(τ), R(τ),Q

e
c(τ)( 􏼁 ∈ S, (11)

where Qarr(τ) ∈ 0, 1, . . .{ } denotes the number of arrival
tasks at the τth time slot. Qe

u(τ) ∈ 0, 1, . . . , |Qe
u(τ)|􏼈 􏼉 denotes

the user’s executing queue’s state at the τth time slot. R(τ) �

(R1(τ), . . . , Ri(τ), . . . , Rn(τ)) | Ri(τ) ∈ [10, 100]􏼈 􏼉 ∈ R is a
vector of the transmission rate state between user and n edge
servers at the τth time slot. Qe

c(τ) � (Qe
c,1(τ), . . . ,Qe

c,i􏽮

(τ), . . . ,Qe
c,n(τ)) |Qe

c,i(τ) ∈ 0, 1, . . . , |Qe
c,i(τ)|􏼉􏼉 ∈ Q􏽮 is the

vector of the edge servers’ execution queue state at the τth
time slot. Ri(τ) and Qe

c,i(τ) denote the ith edge server’s
transmission rate and the number of the remaining tasks,
respectively. Note that |Qe

u(τ)| and |Qe
c,i(τ)| denote the size

of the mobile device and the ith edger server’s execution
queue, respectively. -e system state s(τ) can be observed at
the beginning of the τth time slot. Qe

u(τ) and Qe
c(τ) dy-

namically evolve according to the offloading policy, while
Ri(τ) can be dynamically calculated.

4.2. Action Space. -e action a(τ) at the τth time slot can be
defined by the following equation:

a(τ) � a
e
u(τ), a

e
c(τ), slcfc (τ), sligc (τ)􏼐 􏼑 ∈ A, (12)

where ae
u(τ) is the number of tasks for executing locally.

ae
c(τ) � (ae

c,1(τ), . . . , ae
c,i(τ), . . . , ae

c,n(τ)) is a vector of the
number of tasks to be offloaded to n edge servers. ae

c,i(τ) is
the number of tasks to be offloaded to the ith edge servers.
-erefore, the total number of tasks to be processed at the
τth time slot is m(a(τ)) � ae

u(τ) + 􏽐
n
i�1a

e
c,i(τ). slcfc (τ) �

(slcfc,1(τ), . . . , slcfc,i(τ), . . . , slcfc,n(τ)) is a vector of the confi-
dentiality service’s level which is employed by tasks off-
loaded to n edge servers. slcfc,i(τ) ∈ 0, 1.0, 0.85,{

0.56, 0.53, 0.32} denotes the security level of confidentiality
service employed by the tasks offloaded to the ith edge

server. sligc (τ) � (sligc,1(τ), . . . , sligc,i(τ), . . . , sligc,n(τ)) is a vector
of the integrity service’s level which employed by tasks
offloaded to n edge servers. sligc,i(τ) ∈ 0, 1.0, 0.75, 0.69,{

0.63, 0.44} denotes the security level of integrity service
employed by the tasks offloaded to the ith edge server. Note
that an action a(τ) must satisfy the constraint condition that
the number of assigned tasks is equal to the current number
of arrival tasks.

4.3. StateTransitionandRewardFunction. Given the current
state s(τ) � ((Qw

u (τ),Qe
u(τ), R(τ),Qe

c(τ)) ∈ S, after taking
an action a(τ) ∈ A, the state is transferred to the next state
s (τ) � (Qw

u (τ),Qe
u (τ), R (τ),Qe

c (τ)) ∈ S, and the tran-
sition probability can be denoted as p(s (τ) | s(τ), a(τ)).
-e immediate cost obtained by taking the action a(τ) ∈ A
can be denoted as C(τ). -e immediate cost C(τ) is the
weighted sum of immediate energy consumption E(τ),
immediate processing delay T(τ), and immediate task’s
dropping probability D(τ). Based on the above, the average
long-term cost function can be denoted by equation (14):

C(τ) � − φ1E(τ) + φ2T(τ) + φ3D(τ)( 􏼁, (13)

C � lim
τ⟶∞

supEπ 􏽘

n− 1

τ�0
C(τ)⎡⎣ ⎤⎦, (14)

where φ1, φ2, and φ3 are the weights of immediate energy
consumption, immediate processing delay, immediate task’s
dropping probability, respectively. We further derive E(τ),
T(τ), and D(τ) as follows:

(1) Immediate Processing Delay. When action a(τ) is
taken at state s(τ), the immediate processing delay is
induced by the waiting time at user and edge servers’
execution queue, the encryption and transmission
time by user, the decryption time by edge servers,
and the execution time by user and edge servers.
According to Little’s law, the average waiting time tw

u

at user’s execution queue can be calculated by
equation (15). -erefore, after taking an action
a(τ) ∈ A, the total local waiting time ttw

u and total
local execution time tte

u can be calculated by equa-
tions (16) and (17), respectively:

t
w
u �

Qe
u(τ)

fu · Nu

, (15)

tt
w
u � a

e
u(τ) − d

e
u(τ)( 􏼁∗ t

w
u , (16)

tt
e
u �

ae
u(τ) − de

u(τ)( 􏼁 · W

fu · Nu

, (17)

where de
u(τ) denotes the number of dropping tasks at

user’s execution queue. It can be calculated by equation
(30).
When ae

c,i(τ) tasks are scheduled to the τth edge
server’s execution queue, tasks first need to employ
security services to encrypted security-critical data. Let
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tts
c denote the total encryption time of ae

c(τ) tasks.
-erefore, tts

c can be calculated by equation (18). And
then, these encrypted tasks are transmitted to the edge
servers by the wireless channel. Let tttr

c denotes the total
transmission time. -erefore, tttr

c can be calculated by
equation (19). Next, these encrypted tasks are received
and stored in its execution queue by edge servers. Due
to insufficient queue space, de

c,i(τ) tasks are dropped.
-e number de

c,i(τ) of dropping tasks can be calculated
by equation (31).-e remaining (ae

c,i(τ) − de
c,i(τ)) tasks

wait to be executed in execution queue. -e total
waiting time ttw

c can be calculated by equation (20). At
last, they are further decrypted and executed. Let ttds

c

and tte
c denote the total encryption time and the total

execution time, respectively. -erefore, they can be
calculated by equations (22) and (23):

tt
s
c � 􏽘

n

i�1
a

e
c,i(τ) · T

E
c,i􏼐 􏼑, (18)

tt
tr
c � 􏽘

n

i�1

ae
c,i(τ) · Dtx

Ri(τ)
, (19)

tt
w
c � 􏽘

n

i�1
a

e
c,i(τ) − d

e
c,i(τ)􏼐 􏼑 ·

Qe
u(τ)

fc,i · Nc,i/W􏼐 􏼑
, (20)

tt
ds
c,i � a

e
c,i(τ) − d

e
c,i(τ)􏼐 􏼑 ·

TDE
c,i · fu · Nu􏼐 􏼑

fc,i · Nc,i􏼐 􏼑
, (21)

tt
ds
c � 􏽘

n

i�1
tt

ds
c,i , (22)

tt
e
c � 􏽘

n

i�1
a

e
c,i(τ) − d

e
c,i(τ)􏼐 􏼑 ·

W

fc,i · Nc,i􏼐 􏼑
. (23)

-e total immediate processing time T(τ) at the kth
time slot is defined as an average value of the sum of the
encryption time, the transmission time, the waiting
time, the execution time, and the decryption time.
Based on the aforementioned values, T(τ) can be
calculated by the following equation:

T(τ) �
ttw

u + tte
u + tts

c + tttr
c + ttw

c + ttds
c + tte

c( 􏼁

m(a(τ))
. (24)

(2) Immediate Energy Consumption. When action a(τ)

is taken at state s(τ), the immediate mobile device’s
energy is consumed by executing tasks locally,
encrypting offloaded tasks and transmitting the
offloaded tasks to edge server. We define the im-
mediate energy consumption as the average energy
consumed by performing action a(τ).
When the user decides to execute ae

u(τ) tasks locally,
the local execution energy consumption Ee

u(τ) can
be calculated by the following equation:

E
e
u(τ) � P

e
u · tt

e
u. (25)

When m(a(τ)) number of tasks are to be offloaded to n

edge servers, the encryption energy consumption Es
c(τ)

and the transmission energy consumption Etr
c (τ) can

be calculated by equations (26) and (27), respectively:

E
s
c(τ) � P

e
u · tt

s
u, (26)

E
tr
c (τ) � P

tx
u · tt

tr
c . (27)

-erefore, the immediate energy consumption E(τ)

can be denoted by the following equation:

E(τ) �
Ee

u(τ) + Es
u(τ) + Etr

c (τ)( 􏼁

m(a(τ))
. (28)

(3) Immediate Task Dropping Number. -e arriving
tasks will be dropped if the mobile device and edge
servers’ execution queue are full or have insufficient
space at the τth time slot. Let D(τ) denote the
number of dropped tasks. It can be calculated by the
following equation:

D(τ) � d
e
u(τ) + 􏽘

n

i�1
d

e
c,i(τ), (29)

d
e
u(τ) � max 0, a

e
u(τ) − Q

ava
u (τ)( 􏼁( 􏼁, (30)

d
e
c,i(τ) � max 0, a

e
c,i(τ) − Q

ava
c,i (τ)􏼐 􏼑􏼐 􏼑, (31)

where Qava
u (τ) � |Qe

u(τ)| − Qe
u(τ) + eu(τ) denotes the

residual available space of the mobile device’s execution
queue. eu(τ) � min((Tslot − tts

c − tttr
c ) · (fu · Nu/W),

Qe
u(τ)) denotes the number of tasks actually executed

for the mobile device’s execution queue at the τth time
slot. Qava

c,i (τ) � |Qe
c,i(τ)| − Qe

c,i(τ) + ec,i(τ) denotes the
residual available space of the ith edge server. ec,i(τ) �

min((Tslot − ttds
c,i) · (fc,i · Nc,i/W),Qe

c,i(τ)) denotes the
number of tasks actually executed at the ith edge server
at the τth time slot.

4.4. Problem Formulation. -e objective of this paper is to
find an offloading policy π, which minimizes the average
long-term cost over the infinite time horizon while meeting
the risk probability constraint. -us, the problem can be
formally formulated as

minimize C, (32)

subject to P(τ)≤Pmax, (33)

tt
s
c + t

tr
c ≤Tslot, (34)

where equation (32) is the objective of this paper, equation
(33) is the risk probability constraint, and equation (34)
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indicates that the task transmission and security service
should be conducted in each time slot.

Lacking of a prior knowledge of the task arrival and
channel state, it is very difficult to solve this optimization
problem by traditional methods. Fortunately, without the
prior knowledge of network state transition, deep Q-net-
work (DQN) can solve this kind of stochastic optimization
problem. In the next section, a SCACO strategy based on
deep Q-network is introduced to solve our security-aware
computation offloading problem.

5. Algorithm Implementation

-e formulated computation offloading optimization
problem in Section 4 is essentially an infinite-horizon
Markov decision process with the discounted cost criterion.
To solve the optimal computation offloading policy, we
propose a SCACO scheme based on deep Q-network (DQN)
[40]. In this section, we first introduce the traditional so-
lutions for the Markov decision process and then introduce
the SCACO strategy based on deep Q-network.

5.1. Optimal MDP Solution. To solve the optimal policy π∗,
an optimal mapping from any state s(τ) to the optimal
action a(τ) need to be achieved. Since the optimal state-
value function Vπ∗(s) can be achieved by solving Bellman’s
optimality equation, Bellman’s optimality equation of the
formulated computation offloading problem is defined by
the following equation:

Vπ∗(s) � max
a∈A

C(s, a) + c 􏽘
s ∈S

p(s | s, a)Vπ∗(s )
⎧⎨

⎩

⎫⎬

⎭.

(35)

According to Bellman’s optimality equation, the optimal
policy of state s(τ) can be obtained by the following
equation:

π∗(s) � argmax
a∈A

C(s, a) + c 􏽘
s ∈S

p(s | s, a)Vπ∗(s )
⎧⎨

⎩

⎫⎬

⎭.

(36)

-e traditional solutions to solve Bellman’s optimality
equation are based on the value or the policy iteration [41].
-ese two solutions usually need complete knowledge of the
system-state transition probabilities. However, these
knowledges are difficult to obtain in advance in the dynamic
system. Moreover, the network state-space with even a
reasonable number of edge servers is extremely huge. Facing
these problems, the two traditional solutions are inefficient.
-us, the DQN-based learning scheme which is a model-free
reinforcement learning method is introduced to approach
the optimal policy.

5.2. DQN-BasedOffloading Decision Algorithm. -e optimal
action-value function Q∗(s, a) which is on the right-hand
side of equation (35) can be defined as follows:

Q
∗
(s, a) � max

a∈A
C(s, a) + c 􏽘

s ∈S
p(s | s, a)Vπ∗(s )

⎧⎨

⎩

⎫⎬

⎭.

(37)

To address these challenges mentioned in Section 5.1, a
model-free deep reinforcement learning algorithm called
deep Q-network (DQN) is proposed. A deep neural network
can be used to approach the optimal action-value function
Q∗(s, a) without any information of dynamic network
statistics. -e DQN-based offloading decision algorithm can
be illustrated in Figure 4.

At each time slot τ, the system state
s(τ) � (Qarr(τ),Qe

u(τ), R(τ),Qe
c(τ)) is first fed into the

neural network. Based on the system state, the Q_values
Q(s(τ), ·) for all possible actions a(τ) ∈ A are obtained.
-en, the action a(τ) corresponding to the state s(τ) can be
selected according to the ε-greedy method, and the im-
mediate cost can be calculated by using equation (13). Next,
the resulting system state s (τ + 1) at the next time slot
(τ + 1) can be observed. And last, the transition experience
tr(τ) � (s(τ), a(τ), C(s(τ), a(τ)), s (τ + 1)) can be ob-
tained and stored into replay memory of a finite size. -e
replay memory can be denoted by Ωτ � mτ− U+1,􏼈

mτ− U+2, . . . , mτ} at τth time slot, where U is the size of the
replay memory. To address the instability of the Q-network
due to the use of nonlinear approximation function, the
experience replay technique is adopted as the training
method. At the end of each episode k, a minibatch 􏽥Ωk ⊂ Ωk

of transitions from the replay memory are randomly
chosen to train the Q-network in the direction of mini-
mizing a sequence of the loss functions, where the loss
function at time step k is defined as

L θk( 􏼁 � E􏼢C􏼠s(τ), a(τ)) + c max
a(τ)∈A

Q s(τ + 1), a(τ + 1); θk+1( 􏼁

− Q s(τ), a(τ); θk( 􏼁􏼡

2

􏼣.

(38)

In other words, given a transition tr(τ) � (s(τ),

a(τ), C(s(τ), a(τ)), s (τ + 1)), the weight θ of the Q-net-
work are updated in a way that the squared error loss is
minimized between the current predicted Q value
Q(s(τ), a(τ); θk) and the target Q value C(s(τ), a(τ))+

cmaxa(τ)∈AQ(s (τ + 1), a(τ+); θk+1).
-e DQN-based offloading decision algorithm is de-

scribed in Algorithm 1 in detail.

6. Experiments

In this section, we perform simulation experiments to
demonstrate the effectiveness of our proposed SCACO
strategy. First, we present our experiment parameters setup.
-en, we analyze the performance of our proposed strategy
with the varying of different parameters.

6.1. Experiment Parameters. In this section, to evaluate the
performance of the proposed SCACO strategy, we
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implement and simulate our strategy on Python 3.6 using a
Dell R530 server configured with one CPU (2.2GHz 8
cores). We set the experimental parameters referring to the
literatures [2, 25, 42, 43]. Major simulation parameters are
described in detail as follows.

In this paper, we mainly consider the scenario where a
mobile device safely and efficiently offloads computation
tasks to n edge servers. Initially, the mobile device’s CPU
frequency fu is set to fu � 2.5GHz, and the number Nu of
its processor cores is set to Nu � 4. -e mobile device’s

computation power Pe (in Watt), transmitting power Ptx,
and receiving power Prx are set to Pe � 5W, Ptx � 0.25W,
and Prx � 0.1W, respectively. -e mobile device execution
queue’s size is set to |Qe

u| � 6. We assume that there are 2
edge servers. -e CPU frequencies of these two edge servers
are set f1

c � f2
c � 2.5GHz. -e processor cores of them are

N1
c � N2

c � 6. -e execution queues’ size of them is set to
|Q1

c | � |Q2
c | � 10. Moreover, the risk coefficients of confi-

dentiality service for these two edge servers are set λ1cf � 2.4
and λ2cf � 2.7, respectively. -e risk coefficients of integrity

Reward

Action

DQN

Policy

Gradient

Weight updating

Mobile device’s
energy

�e processing
delay

�e number of
dropping tasks

�e risk rate

(xU–1, yU–1, CU–1)

Minibatch

(xU–2, yU–2, CU–2)

(x1, y1, C1)

Sample data

...

...

...

State En
vi

ro
nm

en
t

Mobile device’s
execution queue

Channel gain
state

Edge server’s
execution queue

�e number of
arrival tasks

...

Figure 4: DQN-based offloading decision algorithm.

Begin
(1) Initialize the replay memory Ω with a size of U, the minibatch 􏽥Ω ⊂ Ω with a size of 􏽥U.
(2) for k � 1, 2, . . . do
(3) At beginning of the τth time slot, observe the system state s(τ) ∈ S
(4) Select an action a(τ) ∈ A randomly with probability ε or yk � argmaxa(τ)∈AQ(s(τ), a(τ); θτ) with probability 1 − ε
(5) Offload the tasks according to action a(τ) and observe the cost C(s(τ), a(τ)) and the new system state s (τ) ∈ S at the next

time slot τ + 1.
(6) Store the transition experience (s(τ), a(τ), C(s(τ), a(τ)), s (τ + 1)) into replay memory Ω
(7) Randomly sample a minibatch of transition experience 􏽥Ωk from replay memory Ωk

(8) Train the Q-network based on the loss function of the selected transition experiences
(9) Calculate the loss value between the current predicted Q value Q(s(τ), a(τ); θk) and the target Q value

C(s(τ), a(τ)) + cmaxa(τ)∈AQ(s (τ + 1), a(τ + 1))

(10) end for
(11) Record the set of optimal weights θ

End

ALGORITHM 1: DQN-based computation task offloading algorithm.
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service for these two edge servers are λ1ig � 1.5 and λ2ig � 1.8,
respectively.

For the communication model, the transmission power
of the edge server is PeNB � 40W, the maximum bandwidth
is Bi � 100MHz, the wireless channel gain is Gi � [0.3, 4.5],
and the Gaussian white noise power is σ2 � − 174 dbm/Hz.

For the computation task model, we assume that the
tasks’ arrival process follows a Poisson distribution with a
parameter λtask � 10, which is considered as the estimated
value of the average number of arrived tasks during a period
Tslot � 1 S. -e task input is set to Dtx � 0.1MB. -e task’s
workload is W � 2.5GHz·S. In addition, the maximum risk
rate for task execution is set to Pmax � 0.4.

-e weights of energy consumption, processing delay,
and task’s dropping probability are φ1 � 8, φ2 � 0.2, and
φ3 � 3, respectively.

In the DQN-based learning algorithm, the discount
factor is c � 0.9, the replay memory is assumed to have a
capacity of U � 5000, and the size of minibatch is set to
batchsize � 32. We implement the DQN learning algorithm
based on the TensorFlow APIs and choose a gradient descent
optimization algorithm called RMSProp as the optimization
method to train the Q-network. During the training, we
select the action based on ε-greedy with probability ε � 0.1.

6.2. Performance Analysis. To demonstrate the effectiveness
of our proposed SCACO scheme, the following peer schemes
are conducted on four performance metrics, such as total
cost, total energy, total delay, and total number of dropping
tasks:

(i) Local. At each time slot, the arriving tasks are
processed locally so that the risk probability of task
execution is 0.

(ii) Max_Level. -is scheme employs various security
services and sets the security level of all security
services to the highest level 1.

(iii) SCACO. -is abbreviation stands for the security
and cost-aware computation offloading scheme, the
objective of which is to minimize the long-term cost
under the risk probability constraints.

6.2.1. Performance Impact of Risk Rate. Figure 5 illustrates
the performance of three schemes as the risk rate varying
from 0.1 to 1.0. Figure 5(a) presents the influence of different
risk rates on the long-term cost. As observed from
Figure 5(a), the long-term cost obtained by SCACO de-
creases gradually with increasing risk probability, while the
curves for the long-term cost of Local andMax_Level are flat.
-is is because the security levels of security services
gradually decrease with increasing risk probability. With a
lower security level, both the task processing time and the
mobile device’s energy consumption will be less. Conse-
quently, the long-term cost will be reduced as well. -e long-
term costs of Local and Max_Level are independent of the
risk rate so that their long-term costs are constant and the
curves are flat. Moreover, the long-term cost obtained by the

SCACO scheme is lower than those of Local and Max_Level
schemes. -e reason is that a lower security level can meet a
higher risk rate constraint. -e lower the security service
level, the less the task processing time and mobile device’s
energy consumption, and thereby the less the long-term
cost.

Figures 5(b)–5(d) show the energy consumption, delay,
and number of dropping tasks for three schemes when the
risk rate increases. As shown in Figures 5(b)–5(d), the total
energy consumption, the delay, and the number of dropping
tasks obtained by SCACO decrease gradually with increasing
risk rate, while these values of Local and Max_Level are
constant. In addition, we can observe from Figures 5(c) and
5(d) that the energy consumption and the number of
dropping tasks obtained by SCACO are lower than those by
Local and Max_Level. -e reason is the same to the long-
term cost above. We can observe from Figure 5(b) that the
delay of Max_Level is the maximum and that of Local is
minimium. -e delay of SCACO is between Local and
Max_Level. -e reason is that the optimization of energy
consumption is more important than the delay. To reduce
the energy consumption, more tasks are offloaded to the
edge servers, thereby incurring more longer waiting time.

6.2.2. Performance Impact of Computing Capacity of Edge
Server. -e computing capacity of the edge server is mainly
relative to the number of CPU cores. To investigate the
impact of computing capacity of the edge server, we vary the
CPU cores from 4 to 8 with the increment of 1. Figure 6(a)
shows that the long-term costs obtained by SCACO and
Max_Level decrease gradually with increasing CPU cores.
-is is due to the fact that the more the computing resource,
the shorter the tasks’ processing delay, which leads to lower
long-term cost. However, when the number of CPU cores is
equal to or larger than 8, the long-term costs of SCACO and
Max_Level become stable and no longer increase. -e main
reason is that the arriving tasks can be processed timely
under this computing capacity. Specially, the long-term cost
of SCACO is lower than that of Max_Level. -at is because
that the security level of SCACO is lower than that of
Max_Level. Moreover, the curve of Local is flat. -at is
because Local executes all tasks locally and it is independent
of edge server’s computing capacity.

Figures 6(b)–6(d) show that the energy consumptions,
delay, and number of dropping tasks for SCACO and
Max_Level decrease when the number of CPU cores in-
creases, while these values obtained by the Local scheme are
constant.-e reason is the same to the long-term cost above.
Moreover, as shown in Figures 6(c) and 6(d), the energy
consumption and number of dropping tasks for SCACO are
lower than those of Local. It is due to the fact that SCACO
employs a lower security level thanMax_Levelwhile meeting
the risk rate. We can further observe from Figure 6(b) that
the delay of Max_Level is the maximum and that of Local is
minimum. -e delay of SCACO is between Local and
Max_Level. -e reason is that the optimization of energy
consumption is more important than that of the delay. To
reduce the energy consumption, more tasks are offloaded to
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the edge servers, thereby incurring more longer waiting
time.

6.2.3. Performance Impact of Task Workload. To examine
the influence of different task workloads on the long-term
cost, we vary the value of task workload from 1.5 to 3.5 with
the increment of 0.5. Figure 7 illustrates the long-term cost
of three schemes. As shown in Figure 7(a), the long-term
costs of three schemes increase with increasing task work-
load. -e reason is that the larger the task workload, the
larger the processing time and energy consumption, and
thereby the larger the long-term cost. Moreover, SCACO
shows a lower cost than Local andMax_Level schemes. -at
is because the optimization objective of SCACO is to
minimize the long-term cost while satisfying the risk rate
constraints.

Figures 7(b)–7(d) show that the energy consumptions,
delay, and number of dropping tasks for three schemes

increase gradually with increasing task workload. Especially,
as shown in Figures 7(c) and 7(d), the energy consumption
and number of dropping tasks obtained by SCACO are lower
than those of Local andMax_Level. -e reason is the same to
the long-term cost above. However, we can further observe
from Figure 7(b) that the delay obtained by SCAC is between
Local andMax_Level. -e reason is the same as the previous
section.

6.2.4. Performance Impact of Task Data Size. Figure 8 il-
lustrates the impact of task data size on the performance. We
discuss about the performance of three schemes when the
task data size is varied from 0.1 to 0.5 with the increment of
0.1. As observed from Figure 8(a), the long-term costs of
SCACO and Max_Level schemes increase gradually with
increasing task data size. It is because that the larger the task
data size, the longer the tasks’ processing delay and the
higher the mobile device’s energy consumption, which leads
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Figure 5: Reward (a), energy consumption (b), delay (c), and the number of dropping tasks (d) w.r.t. different risk rates.
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to higher long-term cost. Moreover, the long-term cost of
SCACO is lower than that of Max_Level. -e reason is that
comparing with Max_Level scheme, a lower security level is
selected by SCACO while satisfying the risk constraint. Fi-
nally, the curve of the Local scheme is flat. It is due to that the
Local scheme executes all tasks locally, and it is independent
of task data size.

Figures 8(b)–8(d) show that the energy consumption,
delay, and number of dropping tasks for SCACO and
Max_Level schemes increase gradually with increasing
task data size, while these curves of Local scheme are flat.
In addition, the energy consumption and number of
dropping tasks for SCACO are lower than these of Local and
Max_Level, while the delay of SCACO is between Local and
Max_Level.

6.2.5. Performance Impact of Task Arrival Rate. To inves-
tigate the impact of the task arrival rate, the experiments are
conducted with the task arrival rate varying from 10 to 18.
Figure 9(a) shows the long-term cost which is obtained by
three schemes. We observe from Figure 9(a) that the long-
term costs of three schemes increase with increasing task
arrival rate. -at is because over the increase of the task
arrival rate, a higher number of tasks need to be processed at
each time slot, thereby incurring a higher long-term cost.
Moreover, the SCACO shows a lower cost than Local and
Max_Level schemes. -at is because the main objective of
the proposed schemes is to minimize the obtained average
long-term cost while satisfying the risk rate constraints.

Figure 9(b) shows that the delay of SCACO and
Max_Level schemes gradually increases with increasing task
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Figure 6: Reward (a), energy consumption (b), delay (c), and the number of dropping tasks (d) w.r.t. different CPU cores.
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arrival rate, while the delay of Local is constant. -at is
because the higher the task arrival rate, the more the tasks
stored at the user’s and edge servers’ execution queue, and
thereby the longer the waiting time. In addition, the delay of
SCACO is between Local and Max_Level.

As shown in Figure 9(c), we observe that the mobile
device’s energy consumption of SCACO and Max_Level
gradually increases with the increase of the task arrival rate,
while the energy consumption of Local is constant. With the
increase of the task arrival rate, there are much more tasks
which are offloaded to execute remotely. -e more the tasks
offloaded to the edge servers, the more the encryption energy
consumption and transmission energy consumption con-
sumed. -erefore, the mobile device consumes a higher
amount of energy. Moreover, SCACO has a lower cost than
Local and Max_Level schemes.

Figure 9(d) shows that the number of dropping tasks
gradually increases with increasing task arrival rate. -e
main reason is that the higher the task arrival rate, the higher
the number of arrival tasks at a time slot. However, with the
limited-size executing queue of the mobile device and edge
servers, newly arrived tasks will be dropped due to the lack of
queue space. -e more the tasks generated, the higher the
number of the dropping task.

6.2.6. Performance Impact of the Number of Edge Server.
Figure 10 illustrates the performance of three schemes when
the number of edge servers varying from 2 to 4. As shown in
Figure 10, the long-term costs obtained by SCACO and
Max_Level schemes decrease with increasing number of the
edge server, while the long-term cost of the Local scheme is
constant. -e reason is that there are more edge servers
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Figure 7: Reward (a), energy consumption (b), delay (c), and the number of dropping tasks (d) w.r.t. different workloads.
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Figure 8: Reward (a), energy consumption (b), delay (c), and the number of dropping tasks (d) w.r.t. different data sizes.
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Figure 9: Continued.
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Figure 9: Reward (a), energy consumption (b), delay (c), and the number of dropping tasks (d) w.r.t. different task arrival rates.
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Figure 10: Reward (a), energy consumption (b), delay (c), and the number of dropping tasks (d) w.r.t. different number of edge servers.
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which are available for task offloading. -e more the edge
servers, the shorter the tasks’ processing delay, thereby in-
curring lower long-term cost. However, the performance of
the Local scheme does not change with the variation of the
number of edge servers since the Local scheme executes
locally all tasks. Moreover, the long-term cost of SCACO is
lower than that of Max_Level. -at is because that SCACO
employs a lower security level thanMax_Levelwhile meeting
the risk rate.

Figures 10(b)–10(d) exhibit the delay and number of
dropping tasks obtained by SCACO andMax_Level schemes
decrease with increasing number of edge servers, while the
curves of the Local scheme are flat. -e reason is that when
more edge servers are available, the user offloads its tasks to

more edge servers, and the processing delay of tasks and the
number of tasks dropping are decreased. Figure 10(c) shows
that the energy consumptions of SCACO and Max_Level
increase gradually with increasing number of edge servers.
-is is due to that the more the edge servers, the lesser the
number of tasks dropping, and the more the number of tasks
which are executed locally or remotely, thereby the more the
energy consumption.

6.2.7. Performance Impact of SCACO. Figures 11–16 show
the learning curves and loss curves of the SCACO scheme
over variations of risk rate, computing capacity, task
workload, task data size, task arrival rate, and number of
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Figure 11: Learning curves w.r.t. different risk rates.
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Figure 12: Learning curves w.r.t. different number of CPU cores.
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edge servers, respectively. For simplicity, we use Risk0.1,
Risk0.3, Risk0.5, Risk0.8, and Risk1.0 to represent the long-
term cost of SCACO for risk rates 0.1, 0.3, 0.5, 0.8, and 1.0,
respectively. Nc4, Nc5, Nc6, Nc7, and Nc8 are used to
represent the long-term costs of SCACO for the number of
CPU cores 4, 5, 6, 7, and 8, respectively. W1.5, W2.0, W2.5,
W3.0, and W3.5 are used to represent the long-term costs of
SCACO for the workloads 1.5, 2.0, 2.5, 3.0, and 3.5, re-
spectively. D_tx0.1, D_tx0.2, D_tx0.3, D_tx0.4, and D_tx0.5
are used to represent the long-term costs of SCACO for the
task data sizes 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.
Lambda_tasks10, lambda_tasks12, lambda_tasks14, lamb-
da_tasks16, and lambda_tasks18 are used to represent the

long-term costs of SCACO for the task arriving rates 10, 12,
14, 16, and 18, respectively. Server_num2, server_num3, and
server_num4 are used to represent the long-term costs of
SCACO for the number of edge servers 2, 3, and 4, re-
spectively. As shown in Figures 11(a)–16(a), the long-term
cost obtained in an episode decreases gradually with in-
creasing learning time (i.e., the number of episodes) from 1
to 1500. Moreover, Figures 11(b)–16(b) show that the loss
value of cost decreases gradually with increasing number of
episodes. When the episode number is higher than 1000, all
learning curves become stable and no longer decrease. -is
result indicates that the proposed DQN-based learning al-
gorithm converges after 1000 episodes. It means that the
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Figure 14: Learning curves w.r.t. different data sizes.
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Figure 13: Learning curves w.r.t. different workloads.
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proposed DQN-based learning algorithm can learn an op-
timal strategy after 1000 episodes to minimize the long-term
cost.

7. Conclusion and Future Work

In this paper, we investigate the security and cost-aware
offloading problem and formulate it as a Markov decision
process. To find the optimal offloading policy, we propose a
security and cost-aware computing offloading (SCACO)
strategy based on a deep Q-network (DQN), the objective of
which is to minimize the total cost subjecting to the risk rate
constraint in mobile edge computing. We evaluate the

performance of the proposed offloading scheme under
various performance metrics. Our experimental results show
that the SCACO strategy can effectively decrease the total
cost while the risk rate constraints are satisfied. Especially,
the SCACO strategy can achieve the security guard for the
security-critical tasks in mobile edge computing. In our
experiment, we mainly investigate that the risk rate of se-
curity service, security service, risk coefficient, edge servers’
computing capacity, tasks workload, task data size, task
arrival rate, and the number of edge servers influence on the
long-term cost. -e extensive experiments demonstrate the
effectiveness of the SCACO strategy. In future work, we will
further investigate the offloading problem for multiple
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Figure 16: Learning curves w.r.t. different number of edge servers.
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mobile devices which offload computation tasks to multiple
edge servers.
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