
MMJN: Multi-Modal Joint Networks for 3D Shape Recognition
Weizhi Nie∗

Tianjin University
truman.nie@gmail.com

Qi Liang
Tianjin University

tjuliangqi@tju.edu.cn

An-An Liu*
Tianjin University

anan0422@gmail.com

Zhendong Mao
University of Science and Technology

of China
maozhengdong2008@gmail.com

Yangyang Li
National Engineering Laboratory for
Public Safety Risk Perception and

Control by Big Data (PSRPC), CAEIT
liyangyang@cetc.com.cn

ABSTRACT
3D shape recognition has attracted wide research attention in the
field of multimedia and computer vision. With the recent advance
of deep learning, various deep models with different representa-
tions have achieved the state-of-the-art performances. Among them,
many modalities are proposed to represent 3D model, such as point
cloud, multi-view, and PANORAMA-view. Based on these represen-
tations, many corresponding deep models have shown significant
performances on 3D shape recognition. However, few work consid-
ers utilizing the fusion information of multiple modalities for 3D
shape recognition. Since different modalities represent the same
3D model, they should guide each other to get a better feature rep-
resentation. In this paper, we propose a novel multi-modal joint
network (MMJN) for 3D shape recognition, which can consider the
correlation between different modalities to extract the robust fea-
ture vector. Specifically, we propose a novel correlation loss which
can utilize the correlation between different features extracted by
different modality networks to increase the robustness of feature
representation. Finally, we utilize the late fusion method to fuse
multi-modal information for 3D shape representation and recogni-
tion. Here, we define the weight of different modalities based on the
statistic method and utilize the advantages of different modalities to
generate more robust feature. We evaluated the proposed method
on the ModelNet40 dataset for 3D shape classification and retrieval
tasks. Experimental results and comparisons with the state-of-the-
art methods demonstrate the superiority of our approach.

CCS CONCEPTS
• Computing methodologies → Computer vision; 3D imag-
ing; • Information systems → Information retrieval.
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1 INTRODUCTION
With the development of digitization techniques and computer vi-
sion, 3D models are widely used in our daily life, such as computer-
aided design, medical diagnoses, bioinformatics, 3D printing, medi-
cal imaging and digital entertainment. How to automatically recog-
nize 3D shapes has attracted much attentions in recent years. With
the development of advanced sensors, various modalities have been
employed to represent 3D models, such as multi-view, point cloud,
sketch image and PANORAMA image. Thus, it is natural and rea-
sonable to utilize different approaches to learn the representation
of 3D models based on multi-modal information.

MVCNN [34] extracts a collection of 2D view images by render-
ing the 3D model, and combines information from multiple views
of a 3D shape into a single and compact shape descriptor. PointNet
[9] uses density occupancy grids representations for the 3D point
cloud data, and PointNet++ [27] recursively put it into a hierar-
chical neural network to get a representation of 3D shape. The
PANORAMA representation is consecutively extracted by posing
normalized 3D models using the SYMPAN method. The panoramic
views consist of 3-channel images, containing the Spatial Distri-
bution Map, the Normals’ Deviation Map and the magnitude of
the Normals’ Devation Map Gradient Image [30, 31]. The sketch
modality utilizes the sketch information to represent a 3D model.
[38] proposes a novel network to extract the sketch information
for 3D model representation. Sketch information can effectively
handle the shape changes due to scale changes. However, all of
these approaches only focus on the single modality of 3D data and
ignore the correlation among them.

3D models can be represented by different modalities, and vari-
ous approaches have tried to learn 3D representation using these
modalities. Since these features represent the same 3D model, it
is intuitive that these features have strong correlation. Therefore,
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they can guide each other in the training step for more robust rep-
resentation. In this paper, we propose a novel Multi-Modal Joint
Network (MMJN) for 3D shape recognition. First, we extract the
data of three modalities for each 3D model. Specifically, we utilize
point cloud and multi-view data to represent the structure and
visual information of the 3D model, respectively. Meanwhile, we
utilize PANORAMA to represent the surface information of 3D
model. Second, we utilize PointNet, MVCNN and PANORAMA-
MVCNN to learn the feature vectors of 3D model, respectively. We
design a novel correlation loss, which can effectively mitigate the
distribution discrepancy across different modalities, guide the fea-
ture learning and increase the learning rate in training step. Finally,
we propose an effective fusing approach to fuse the features of
different modalities for final recognition.

The contributions of this paper include:
• We propose a novel Multi-Modal Joint Netwrok (MMJN) for
3D shape recognition. To the best of our knowledge, we are
the first to consider multi-modal information fusion for 3D
shape recognition;

• We propose a novel correlation loss to mitigate the distribu-
tion discrepancy across different modalities. This loss can
effectively increase the learning rate and improve the robust-
ness of feature representation learned by different networks;

• We propose an effective feature fusion method, which can
define the weights of different networks to effectively utilize
the advantage of multi-modal features for final classification;

• The popular dataset is used to validate the performances
by the proposed method, and several classic methods are
used for comparison. The final experiment demonstrates the
superiority of our approach.

The rest of the paper is organized as follows. In Section II, we
review the related work. Then, we introduce the detail of our meth-
ods in Section III. We will detail how to fuse different models by
aggregation function with different weights in Section III. The ex-
perimental settings, results, and analysis are introduced in Section
IV. Section V introduces the implementation details of our work. In
section VI, we will conclude the paper.

2 RELATEDWORKS
The number of different methods[5, 8, 11, 15, 33, 36, 37, 43] of 3D
shape recognition has exploded in recent years. The researchers
designed different convolutional neural networks, taking the pre-
processed 3D data like voxels, image projections, raw point clouds,
and graphs transformed from source data as input. Most 3D shape
recognition methods are validated on the ModelNet10 and Model-
Net40 datasets. In this section, the methods of learning 3D features
by deep learning models are reviewed.

2.1 Mesh-based methods.
3D mesh composed of vertices which are connected by edges is
an important raw representation for 3D shapes. There have been
some studies on learning features from 3D meshes directly from
raw 3D representations using deep learning models. Richard Socher
et al. [32] proposed a model combining convolution and recursive
neural networks (CNN and RNN) which is introduced for learning
the features of RGBD images and classifying the corresponding

3-D shapes. To learn 3D local features, Han et al. [13] proposed a
method that learns unsupervised 3D local features, and the features
are expressed by the surface patterns which capture the common
geometry and structure among the huge number of 3-D local re-
gions. In order to learn global features, a novel deep learning model,
mesh convolutional restricted Boltzmann machines (MCRBMs), is
proposed for unsupervised feature learning for 3-D meshes by Han
et al. [12]. They also proposed a deep context learner [14], a deep
neural network with a novel model structure which encodes not
only the discriminative information among local regions but also
the one among global shapes. Feng et al. [7] proposed MeshNet
which uses face-unit and feature splitting. In this way, MeshNet is
able to solve the complexity and irregularity problem of mesh and
conduct 3D shape representation well.

2.2 Volume-based methods.
In order to convolve 3D model just like any other tensor [9, 17, 27,
29, 35], many works based on voxelized shapes have been done.
These methods are constrained by their resolution owing to data
sparsity and costly computation of 3D convolution. Wu et al. [35]
proposed 3D ShapeNets to learn global features from voxelized
3D shapes based on convolutional restricted boltzmann machine.
In order to deal with problems of the additional computational
complexity (volumetric domain) and data sparsity, Qi et al. [25]
proposed two distinct network architectures of volumetric CNNs.
PointNet [9] first proposed a method using deep neural networks to
directly process point clouds, whereas the local features are ignored.
In this regard , Qi et al. [27] proposed a method learning to extract
point features and balance multiple feature scales in an end-to-end
fashion. Klokov et al. [20] proposed a new architecture works with
unstructured point clouds to avoid poor scaling behavior.

2.3 View-based methods.
The first view based 3D descriptor is Lighting Field Descriptor [3],
and the similarity of 2D features of their corresponding two view
sets is employed to measure the similarity between two 3D shapes.
Similarly, GIFT [1] measures Hausdorff distance between their
corresponding view sets. Recently Su et al. [34] proposed a multi-
view convolutional neural network, which generates multiple 2D
projection features learned by CNN within an end-to-end trainable
fashion. In order to exploit the structural information in views
of 3D shape, DeepPano [31] was proposed to learn features from
PANORAMA views using CNN. Sfikas [30] proposed a method
capturing PANORAMA views feature aiming at continuity of 3D
shapes and minimizing data preprocessing via the construction of
an augmented image representation. Zhang et al. [42] propose an
inductive multi-hypergraph learning algorithm, which targets on
learning an optimal projection for themulti-modal training data and
geting the projection matrices and the optimal multi-hypergraph
combination weights simultaneously.

2.4 Multi-modal Fusion Methods.
For 3D shapes, whether mesh-based methods, volume-based meth-
ods, or view-based methods can describe 3D shapes well separately.
So we naturally think of using the fusion method to take advantage
of each modality. Hegde et al. [16] proposed new Volumetric CNN
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Figure 1: Our MMJN framework is composed of 4 parts: point cloud network, multi-view network, PANORAMA-view network
and feature fusion part. Point cloud network: The classic PointNet structure is employed. This network takes n points with 3-
dimensional coordinates as input. Then in spatial transformnet, a 3×3matrix is learned to align the input points to a canonical
space. For EdgeConv, it extracts the local patches of each point by their k-nearest neighborhoods and computes edge features
for each point by applying a 1 × 1 convolution with output channels M’, and then generates the tensor after pooling among
neighboring edge features. Multi-view network: The structure of MVCNN is employed, and the view pooling layer conducts
max pooling across all views. The PANORAMA-view network: It also utilizes the structure ofMVCNN.However, we retrain the
parameter of MVCNN based on PANORAMA view data. The classification fusion part: based on the feature vectors produced
by the above three networks, this fusion part defines the weight of different modality features by statistic experiment and
utilizes the advantage of different modality features for a better classification result.

(V-CNN) architectures to generate features learned from the two
representations. In order to jointly classify object proposals and do
oriented 3D box regression, Chen et al.[4] designed a region-based
fusion network to effectively combine features from multiple views
and point cloud data from LIDAR. In [10] they explored the fusion
of RGB, depth maps and ranging for 2D pedestrian detection used
in autonomous driving. Poria et al.[24] proposed attention based
networks for improving both context learning and dynamic feature
fusion to achieve attentive multi-modal fusion. Similarly, You et al.
employed PVNet[39] to model the intrinsic correlation and discrim-
inability of different structure features from the point cloud data
using high-level features from the multi-view data. In addition, You
et al.[40] proposed PVRNet, a novel multi-modal fusion network
which takes full advantage of the relationship between point cloud
and views.

3 OUR APPROACH
Figure 1 shows the framework of our work, which mainly includes
three steps: 1) Multi-modal data generation: we utilize OpenGL
to extract visual and PANORAMA information and employ Point
cloud to extract point cloud information for each 3Dmodel; 2) Multi-
modal joint network learning: it is used to extract the features of 3D
model based on different modalities. Here, we propose a correlation
loss to make these networks share the feature information, increase
the final learning rate, and improve the robustness of feature; 3)
Feature fusion: we propose an effective feature fusion method to
utilize the advantages of different modality networks for a more

robust feature of 3D model. In the next part, we will detail these
three steps.

3.1 Data Processing
Multi-View (MV modality): The NPCA method [23] is used to
normalize each 3Dmodel. Then, the visual tool developed byOpenGL
is utilized to extract a set of views from each 3Dmodel like a human
observer. These views wrap around the model and are extracted
every 30 degrees around the Z axis. We can extract 12 views to
represent the visual and structure information of the 3D model.
These views can also be seen as a sequence of images.
Point Cloud (PC modality): We convert the PLY models into
Point Cloud Data (PCD) clouds by Meshlab [28]. Because the size
of the models in the dataset is not uniform, the mesh density of the
model surface is also different. In order to get more dense point
cloud data, we perform mesh subdivision on the loaded model by
adding triangles, and indirectly increase the number of points. Here
we use the butterfly subdivision algorithm [6], and we export the
point cloud data for each model with 1024 points.
PANORAMA View (PV modality): The panoramic view of 3D
model is proposed by [31]. Compared with a normal projection view,
the panoramic view uses a 2D image to represent the structural
information of a 3D model. We project the surface of the 3D model
onto the side surface of the cylinder. The radius of the cylinder is
set to the maximum distance between the model surface and the
centroid, and the height is set to twice the radius. For example,
we extract the panorama views of the Z-axis consist of a set of
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Figure 2: The 3D model and the SDM, NDM, Magnitude of Gradient and 3-channel stacked images on three axes.

points s(φ,y) where φ ∈ [0, 2π ] is the angle in xy plane and y∈
[0,H ] is sampled at rates 2B and B. In this paper, we set B = 128.
s(φ,y) represents the different characteristics on 3D model’s surface,
which are the position of the model’s surface in 3D space (Spatial
Distribution Map or SDM ) and the orientation of the model’s
surface, (Normals’ Deviation Map or NDM). We further generate
the gradient image (Magnitude of Gradient) fromNDMview. Finally,
one 3-channel image (3-channel) is computed by combining the
above three images. At last, we can get 12 different views like
Figure.2 from X, Y and Z axes for each 3D model.

3.2 MMJN: Multi-modality Joint Networks
Based on the multi-modal 3D data, we propose a novel multi-modal
joint network. Figure. 1 shows the detailed framework of our pro-
posed method. The proposed framework consists of three networks,
one for 3D point cloud feature extraction, utilizing the popular
PointNet to learn the transformation function, one for the 3D multi-
view feature extraction, utilizing the classic MVCNN to learn the
feature extraction function, and one for 3D PANORAMA View
feature extraction, also utilizing the MVCNN structure to handle
this problem. In this paper, we consider that the features based on
different modalities should be similar because they represent the
same 3D model. Thus, in order to demonstrate the assumption, we
suppose the three networks have the same dimension of f c ∈ R1024

as the feature vector of 3D model. The proposed method trains
these three deep neural networks simultaneously with proposed
loss including the traditional discrimination loss for each domain
and the correlation loss for cross-modal.

In the traditional training step of single modality network, the
discrimination loss aims at minimizing the intra-class distance of
the extracted features and maximizing the inter-class distance of
the extracted features to a large margin within each modality. The
definition of discrimination loss is followed as:

Ld = −
∑

u
i=1

∑
K
j=1yi j logpi j (βj |β1, β , ..., βK ) (1)

This is the softmax loss.yi j is the real label of sample i from category
j. K is the total number of all categories. With the softmax layer,
the probability prediction of βj is defined based on the modality

feature f as below:

pj (βj |β1, β , ..., βK ) =
eβj∑ K
n=1e

βn
(2)

The discrimination loss has been utilized inmany application and
also gets excellent results in many classic classification problems.
In this work, for each network, we fist introduce the traditional
discrimination loss to guarantee the final performance of trans-
former function. Meanwhile, we also introduce the correlation loss
to guide each other in training step. Thus we can increase the final
learning speed in training step and improve the robustness of final
feature vector. The correlation loss is followed as:

Lc (Mi ,Mn ) =∥ ξ (fMi ) − ξ (fMn ) ∥2 (3)

where f represents the feature vector extracted by different modal-
ity networks,M represents the modality data whose subscript can
be 1, 2, 3 in this work, and ξ = siдmoid(loд(abs(·))) is a normaliza-
tion function. Here, we apply the 2 norms as the distance metric
between two different feature vectors to measure the correlation.
The value of the correlation loss should be smaller and smaller in
the learning step. It means that these features guide each other and
utilize the advantage of different modalities’ feature in training step
to obtain a more robust feature vector. Based on the design of cor-
relation loss, the final loss function of different modality networks
is followed as:

LM1 = Ld,M1 + Lc (M1,M2) + Lc (M1,M3); (4)

where Ld,M1 is the discrimination loss based on modalityM1 net-
work. Lc (M1,M2) and Lc (M1,M3) represent the correlation loss
with modality M2 and modality M3 respectively. Finally, we opti-
mize these three networks through back-propagation with stochas-
tic gradient descent. [18].

3.3 Multi-modal Information Fusion
According to the joint learning of different modalities, we can get
three feature extraction models based on different 3D modalities
data. These features should have small distance or similar position
in the feature space. In this work, we employ the weighted fusion
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Figure 3: The figure shows the process of fusing the features,
and then we fed the features into the fully-connected layers
to make the classification of 3Dmodalities. First, we put the
features into the 1×512, 1×256 and 1×C fully-conneted lay-
ers. The C represent the categories of the dataset. We used
the ModelNet40 dataset here, so we set C to 40. Then we con-
nect a softmax layer to get the probability that the object
belongs to C classes.

method to fuse these three feature vectors. The framework of this
method is shown in Figure.3. The detail is shown in Equation.5.

f =
3∑
i=1

αiξ (fMi );

3∑
i=1

αi = 1;

(5)

where f represents the feature vector extracted by PointNet, multi-
view MVCNN and PANORAMA-MVCNN respectively based on
differentmodalities of 3Dmodel.αi is theweight ofmodality feature
in order to balance the multi-view feature, point cloud feature and
PANORAMA feature. The fused feature is also processed by softmax
to get the class label. The related experiment is shown in Section.4.2.

4 EXPERIMENT
4.1 Dataset
In order to evaluate the performance of our proposedmethod of clas-
sification, we made extensive use of a well-known dataset named
ModelNet [35] which consists of two versions and they are publicly
available for download: ModelNet10 and ModelNet40. ModelNet10
comprises 4899 CAD models split into 10 categories. The training
and testing subsets consist of 3991 and 908 models. ModelNet40
comprises 12,311 CAD models split into 40 categories. The training
and testing subsets of ModelNet40 consist of 9843 and 2468 models.
They are specially clean since the models that do not belong to the
specified categories were manually deleted. Especially, ModelNet10
models are pose normalized in terms of translation and rotation,
and ModelNet40 models are not pose normalized.

4.2 Experiment on The Effectiveness of
Correlation Loss

In this paper, we introduce the correlation loss in the global loss
function. The goal of the design is to make these features guide
each other in training step for more robust representation. In order
to demonstrate the performance of the correlation loss, we compare
the convergence trend of discrimination loss under the action of
correlation loss with that of the discrimination loss in traditional

single-modal network. The corresponding experimental results are
shown in Figure.4. Here, we only show the convergence trend in
100 epoch, as these three networks have an obvious convergence
trend in the first 100 epoch. From these figures, we can find that the
discrimination loss converges quickly when we add the correlation
loss in the global loss function. Meanwhile, the final classification
result also outperforms the results of tradition networks which only
have discrimination loss. The related results are shown in Table.1.
This experiment demonstrates the reasonableness and effectiveness
of our approach.

4.3 Comparison on the Combinations of
Different Modality Networks

In this work, we propose a novel feature fusion method to fuse
the multi-modal information extracted by these different modality
networks. The goal of this design is to utilize the advantages of dif-
ferent modality networks to get more accurate classification result
and more robust feature representation. In order to demonstrate
the performance of this approach, we compare the classification
results of single modality network with the combinations of differ-
ent modality networks. The corresponding experimental results are
shown in Table.1. From this table, we can find that the combination
of different modality networks brings a significant improvement
in performance compared with single modality network. Here, for
ModelNet40, MV+PC brings a 4.05% and 1.58% improvement over
MV and PC respectively. MV+PV brings a 2.15% and 6.28% improve-
ment overMV and PV respectively. PC+PV brings a 0.25% and 6.85%
improvement over PC and PV respectively. Finally, MV+PC+PV
brings a 5.23%, 2.76% and 9.36% improvement over each single
modality respectively. We can find that the PC network brings the
biggest improvement under different conditions. Meanwhile, the
single modality network PC also gets the best classification results
compared with other single modality network. There are reasons
to think that point cloud data represents more information of 3D
modality. This experimental result also demonstrates that different
modalities have different contributions for the final classification
results. We will discuss this problem in the next section.

Table 1: Comparisons of classification accuracy with differ-
entmodalities combination onModelNet10 andModelNet40

.

Method Classification Accuracy
ModelNet10 ModelNet40

MV 89.01% 87.23%
PC 93.28% 89.70%
PV 87.33% 83.10%
MV + PC 92.29% 91.28%
MV + PV 90.41% 89.38%
PC + PV 93.61% 89.95%
MV + PC + PV 93.83% 92.46%

4.4 Experiment on the Multi-modal
Information Fusion

According to the above sections, we draw the conclusion that differ-
ent modalities should have different weights in the final information
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Figure 4: Experiment on classifier loss of different modalities. In order to compare the effects on discrimination loss on each
branch after adding the correlation loss, we calculated the mean discrimination loss on each epoch. (a) compares the effects
on Point Cloud modality, (b) compares the effects on PANORAMA-View modality and (c) compares the effects on Multi-View
modality. LD + LC represents the discrimination loss after adding the correlation loss. LD represents the discrimination loss
without the correlation loss. This figure significantly shows that the discrimination loss drops faster after adding the correla-
tion loss.

fusion in order to utilize the advantage of each modality. In order
to define the weights of different modality networks, we sample
different values of fusion parameters to find the best values. The
related experiment on ModelNet40 dataset is shown in Figure 5.
Finally, we set the parameter α1 = 0.7, α2 = 0.2 and α3 = 0.1 as the
weights of Point Cloud, Multi-view and PANORAMA-view respec-
tively in fusion equation 5. From this experiment, we can find that
the modality PC has the biggest weight. It also demonstrates our
assumption in the above section. Meanwhile, the optimized param-
eters bring 1.36% improvement over the un-optimized condition,
which also demonstrates the effectiveness of the proposed method.

Meanwhile, We also evaluate the performance of the proposed
method using different combinations of the components and demon-
strate the performance of our fusion method in Table.2. In this
table,“P” denotes only the PointNet of our method is used for 3D
model representation and classification. “MV” denotes the multi-
viewMVCNN is used for 3Dmodel representation and classification.
“PV” denotes the PANORMAN views are used for 3D model repre-
sentation and classification. “Late Fusion” denotes that the three
modality networks’ classification results are fused. “Ours” denotes
our fusion method. As shown in the comparison, we observe that
our method obviously outperforms the other comparison methods
in mean class accuracy and global class accuracy. This condition
also demonstrates that our fusion method can effectively utilize the
advantage of each modality data to achieve the best performance.
The visual confusion matrix on ModelNet40 is shown in Figure 7.

4.5 Comparison with State-of-the-art methods
on ModelNet40

To validate the efficiency of the proposedMMJN, 3D shape classifica-
tion experiments have been conducted on the Princeton ModelNet
dataset [35]. Totally, 127,915 3D CAD models from 662 categories
are included in the ModelNet dataset. ModelNet40, a common-used
subset of ModelNet, containing 12,311 shapes from 40 common cat-
egories, is applied in our experiments. We follow the same training
and testing split setting as in [35].
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Figure 5: Experiment on Fusion Parameters. The x, y and
z axes represent the weight of PANORAMA-View modality,
Multi-Viewmodality and Point Cloudmodality respectively.
The color bar represents the accuracy of classification with
the weight, where red illustrates the highest accuracy and
blue indicates the lowest accuracy.

Table 2: Comparisons of different feature fusionmethods on
Classification (ModelNet40)

Methods Mean Class
Accuracy

Overall Class
Accuracy

MV 85.68% 87.23%
PC 87.27% 89.70%
PV 82.30% 83.10%
Late Fusion 90.53% 92.46%
Ours 92.24% 93.82%

In experiments, we have compared the proposed MMJN with
various models based on different representations, including vol-
umetric based models [35], hand-craft descriptors for multi-view
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Table 3: Comparisons of classification accuracy and retrieval mAP on ModelNet40

.

Method Train Config Data Representation Classification Retrieval

Pre train Fine tune #Number of Views (Overall Accuracy) (mAP)

(1)SPH[19] - - - 68.2% 33.3%
(2)LFD[3] - - - 75.5% 40.9%

(3)3D ShapeNets[35] ModelNet40 ModelNet40 Volumetric 77.3% 49.2%
(4)VoxNet[22] ModelNet40 ModelNet40 Volumetric 83.0% -
(5)VRN[2] ModelNet40 ModelNet40 Volumetric 91.3% -
(6)MVCNN-MultiRes[26] - ModelNet40 Volumetric 91.4% -
(7)MVCNN,12×[34] ImageNet1K ModelNet40 12 Views 89.9% 70.1%
(8)MVCNN,metric,12×[34] ImageNet1K ModelNet40 12 Views 89.5% 80.2%
(9)MVCNN,80×[34] ImageNet1K ModelNet40 80 Views 90.1% 70.4%
(10)MVCNN,metric,80×[34] ImageNet1K ModelNet40 80 Views 90.1% 79.5%
(11)PointNet[9] - ModelNet40 Point Cloud 89.2% -
(12)PointNet++[27] - ModelNet40 Point Cloud 90.7% -
(13)KD-Network[20] - ModelNet40 Point Cloud 91.8% -
(14)PointCNN[21] - ModelNet40 Point Cloud 91.8% -
(15)DGCNN[41] - ModelNet40 Point Cloud 92.2% -
(16)PANORAMA-NN[31] - ModelNet40 PANORAMA-Views 90.7% 83.4%
(17)PVNet[39] ImageNet1K ModelNet40 Point Cloud and Multi-Views 93.2% 89.5%

(18)MMJN(Our) ImageNet1K &
ModelNet40 ModelNet40 Point Cloud & 12 Views

& PANORAMA-Views 93.8% 89.8%
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Figure 6: Precision-recall curves for our MMJN and other
methods on the task of shape retrieval on the ModelNet40
dataset.

data [3, 19], deep learning models for multi-view data [26, 34], deep
learning models for PANORAMA-Views [31] and point cloud based
models [9, 20, 21, 27, 41].

In Tab.3, the classification results of all compared methods are
provided. As shown in the results, our proposed MMJN can achieve
the best performance with the classification accuracy of 93.8%.
Compared with the MVCNN using GoogLeNet, our MMJN wins by
1.0% more gains on the classification tasks. For point cloud based

models, our MMJN also outperforms the state-of-the-art point cloud
based model DGCNN by 1.0% in terms of classification accuracy.

In the retrieval task, we apply the fusion feature f in equation.5
as the feature vector of 3D model. The Euclidean distance is used
to compute the similarity between two different 3D models. The
precision-recall curves for retrieval of all compared methods are
demonstrated in Fig.6. From the retrieval results, our approach
achieves an exciting state-of-the-art performance of 89.8%, which
efficiently demonstrates the effective of our MMJN in the 3D shape
retrieval task.

The exciting performance of our proposed MMJN can be ex-
plained from the following reasons. First, the correlation loss can
jointly utilize the advantage of different modalities to guide the pa-
rameter learning and increase the feature learning rate in training
step. Second, the proposed multi-modal feature fusion method can
expand the advantage of different modalities in the final classifi-
cation and retrieval problem. The related experiment also demon-
strates the superiority of our approach.

5 IMPLEMENTATION
Our framework contains point cloud network, multi-view network
and PANORAMA-View network. For point cloud network, 1,024 raw
points for each object are fed into network. For Multi-View network,
12 views for each object are fed into network. The parameters
of CNN in multi-view network are initialized by the pre-trained
ModelNet model. For PANAORAMA-View network, 12 views are
fed into the network that same to Multi-View network, whereas the
parameters aren’t initialized. We pre-train the model on our dataset,
and find the best model to initialize the parameters. The learning
rate we set is 0.0001. All the experiments are conducted on two
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Figure 7: Confusionmatrix for the 3Dmodels of theModelNet-40 dataset classes. Figure a) is the Confusionmatrix’s colormap
of PV modality; Figure b) is the Confusion matrix’s color map of MV modality; Figure c) is the Confusion matrix’s color map
of PCmodality; Figure d) is the Confusion matrix’s color map of late fusion modality. Yellow indicates the highest percentage
of the model’s predict labels, while blue indicates the lowest percentage of the model’s predict labels.

NVIDIA 1080Ti GPUs. Our framework is trained in an end-to-end
fashion.

6 CONCLUSION
In this paper, we propose a novel jointly networks: MMJN, which
can jointly employ different modality data for 3D shape classifica-
tion and retrieval. In our framework, the correlation loss is intro-
duced to employ the advantage of different modality networks to
guide each other for the feature learning. It can increase the learn-
ing rate and also improve the performance of each single modality
network. Then, we propose a novel multi-modal feature fusion
method, which defines the different weights for each modality fea-
ture. It can expand the advantage of each modality network to get
more robust representation for each 3D model. The effectiveness of
our proposed framework has been demonstrated by experimental
results and comparisons with the state-of-the-art models on the
ModelNet dataset. We have also investigated the effectiveness of

different components of our model to demonstrate the robustness
of our framework.
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