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Abstract
To cope with the computational and energy constraints of mobile devices, Mobile Edge Computing (MEC) has recently

emerged as a new paradigm that provides IT and cloud-computing services at mobile network edge in close proximity to

mobile devices. This paper investigates the energy consumption problem for mobile devices in a multi-user MEC system

with different types of computation tasks, random task arrivals, and unpredictable channel conditions. By jointly con-

sidering computation task scheduling, CPU frequency scaling, transmit power allocation and subcarrier bandwidth

assignment, we formulate it as a stochastic optimization problem aiming at minimizing the power consumption of mobile

devices and to maintain the long-term stability of task queues. By leveraging the Lyapunov optimization technique, we

propose an online control algorithm (OKRA) to solve the formulation. We prove that this algorithm is able to provide

deterministic worst-case latency guarantee for latency-sensitive computation tasks, and balance a desirable tradeoff

between power consumption and system stability by appropriately tuning the control parameter. Extensive simulations are

carried out to verify the theoretical analysis, and illustrate the impacts of critical parameters to algorithm performance.

Keywords Mobile edge computing � Energy minimization � Resource and task allocation � Lyapunov optimization �
Queue stability

1 Introduction

Mobile devices, such as wearables, tablets, and smart-

phones, have penetrated into our daily life as the most

important tools for communication, information and

entertainment. With the support of embedded sensors and

cameras, new mobile applications with advanced features,

e.g., online gaming, augmented reality, and object recog-

nition, are becoming prevalent and attracting significant

attention [5]. Such mobile applications usually demand

intensive computation as well as tight latency [4, 32].

However, mobile devices normally have limited battery

energy and constrained computation resources to support

sophisticated applications. The resource scarceness thus

poses an intractable challenge for the development of

mobile platforms and the improvement of mobile service

qualities [20].

Computation offloading is envisioned as a promising

solution to cope with the above challenge, by migrating

offloadable computation tasks from mobile devices to more

powerful servers via wireless access [14]. One possible
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solution is to offload mobile tasks to remote resource-rich

clouds [25], such as Amazon EC2 and Microsoft Azure

[17, 23, 24]. However, the long propagation distance from

mobile users to the remote cloud would bring about

unpredictably high latency for mobile applications [22, 33].

This is especially problematic for a number of emerging

applications that are sensitive to processing latency [26].

To address this limitation, cloudlet based computation

offloading has been proposed as an alternative approach to

powerful remote clouds [34]. A cloudlet is a resource-rich

server or a cluster of servers that can be accessed by nearby

mobile devices through one-hop Wi-Fi access. Because of

the physical proximity, computation offloading to the

cloudlet bypasses the uncontrollable high latency for data

exchange through the wide area network. However, current

Wi-Fi networks suffer from limited coverage, thus can not

provide pervasive services to mobile users. Moreover,

computation resources of the cloudlet may not adequate to

meet QoS requirements of a large number of users. Very

recently, mobile researchers propose a new paradigm

called Mobile Edge Computing (MEC) [31], which aims to

provide information processing and cloud computing ser-

vices at the edge of mobile network, so as to offer a

computation offloading environment characterized by close

proximity, low latency, and high rate service. This para-

digm enables telecom operators to deploy resource-rich

cloud computing infrastructures of their own at the edge of

cellular networks, allowing mobile users and applications

to access pervasive and agile computation services when

and where is needed [26, 43].

Although MEC technology promises attractive benefits,

designing an energy-efficient MEC offloading policy for

mobile devices still faces a number of challenging issues.

Firstly, not all mobile application tasks are suitable for

being offloaded to the MEC server. Some tasks have to be

unconditionally executed on the mobile device, either

because these tasks must access local components (e.g.,

sensor-relevant) or because these tasks might bring privacy

problems when executed remotely (e.g., photo-relevant)

[15, 40]. When a MEC offloading policy chooses local

CPU resources, unoffloadable tasks would interfere with

those offloadable ones since the CPU makes an attempt to

process these two kinds of tasks simultaneously [15]. Such

a problem is to be addressed in the design of dynamic

resource allocation mechanisms. Secondly, to offload

computation tasks for remote execution, a mobile device

needs to deliver task inputs through the base station it is

associated with to the MEC server. Generally, a base sta-

tion provides communication services for a number of

mobile users concurrently, and different users may have

distinct demands on task offloading [42]. As a result, the

MEC offloading policy has to resolve the potential con-

tention on shared communication resources among mobile

users. Thirdly, in real offloading scenarios, task arrivals

and channel conditions are not static, but temporally

dynamic [35]. The MEC offloading policy should be able

to exploit such variations of system dynamics by jointly

controlling CPU clock frequency and wireless transmit

power to maximize energy efficiency of mobile devices

under given constraints on processing latency [9, 36, 39].

As one extreme, if the task arrival rate is low and the

communication condition is bad, then the offloading policy

could prioritize local CPU resources for energy saving. As

the other extreme, if the task arrival rate is high and the

communication condition is good, then the offloading

policy may prefer to offload computation to the MEC

server by transmitting most offloadable tasks through the

base station. Fourthly, computation tasks’ arrival infor-

mation is often unpredictable and even bursty. Meanwhile,

the wireless channel state is also unknown and unpre-

dictable to mobile devices. Thus, conventional determin-

istic control approaches, e.g., [39, 42], are not applicable to

the problems stated above.

To tackle the aforementioned challenges, in this paper,

we jointly consider multi-dimensional tasks and resource

allocation, network stability and latency guarantee to for-

mulate the power minimization problem for mobile devices

in MEC systems. The problem is formulated as a stochastic

optimization problem. It aims to minimize the power

consumption of mobile devices subject to constraints on

queue stability, task scheduling, CPU scaling, power allo-

cation, subcarrier assignment, and worst-case latency. By

leveraging the Lyapunov optimization theory [29, 30], we

propose a new algorithm, referred to as OKRA (Optimal

tasK and Resource Allocation), to solve the formulation.

By exploiting the special structure of the subproblems in

the OKRA design, we have designed simple yet optimal

approaches to make online control decisions including

computation task scheduling, CPU frequency scaling,

transmit power allocation and subcarrier bandwidth

assignment, all of which have closed-form solutions and

don’t require any iteration operations or optimization tools.

Under the framework of Lyapunov optimization, OKRA

can provide explicit performance bounds and approach the

optimum with tunable deviation, without requiring pre-

knowledge of system dynamics (e.g., task arrivals and

channel conditions). In particular, OKRA is capable to

ensure persistent service with bounded latency guarantee

for latency-sensitive computation tasks. Rigorous mathe-

matical analysis and extensive empirical evaluation are

conducted to validate the effectiveness of OKRA in terms

of power optimality, system stability and latency

guarantee.

The rest of this paper is organized as follows. The

review of related work is presented in Sect. 2. In Sect. 3,

we describe system models. In Sect. 4, we formulate the
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optimization problem by Lyapunov optimization, and

propose our OKRA algorithm. The performance of OKRA

is analyzed in Sect. 5. Section 6 illustrates simulation

results and analysis. Finally, we conclude this paper in

Sect. 7.

2 Related work

In this section, we briefly review existing work on resource

management techniques for Mobile Edge Computing, and

Lyapunov optimization theory for stochastic systems.

2.1 MEC resource management techniques

Resource management is very important in realizing low-

latency and energy-efficient MEC systems, which is

facilitated by the network architecture where the base

station and the MEC server are co-located. We review

existing studies on this issue in two categories, i.e., studies

for a single-user MEC system and for a multi-user MEC

system [41].

On one hand, some earlier studies aim at resource

management for single-user MEC systems with only one

dedicated MEC server. In [39], the computational speed,

transmit power and offloading ratio are jointly optimized to

achieve two different design objectives, i.e., minimizing

energy consumption and minimizing execution latency, of

the mobile device. The proposed problems are modeled in

a deterministic form, and solved based on given system

conditions that are known in advance. The authors of [21]

use Markov Decision Process to solve the energy-con-

strained latency minimization problem in MEC, where

computation tasks are scheduled based on the task queue

size, local execution state and channel side information.

Reference [27] investigates a green MEC system with

energy harvesting mobile devices, and adopt the execution

cost, which considers both execution latency and task

failure, as the performance metric. A low-complexity

algorithm is designed to control and optimize energy har-

vesting and computation offloading, so as to minimize

time-average execution cost and avoid battery energy

outage. On the other hand, a number of studies consider the

multi-user MEC system comprising more than one mobile

device that may share a MEC server or server-cluster.

Reference [42] proposes scheduling algorithms of both

radio and computational resources for minimizing energy

consumption of mobile devices in an MEC system based

on orthogonal frequency-division multiple acces-

s(OFDMA). However, the full offloading strategy adopted

in [42] has been revealed by [39] as inefficient and costly.

Reference [41] designs centralized resource management

schemes to achieve the mimimal weighted sum energy

consumption in the multi-user MEC system based on

TDMA and OFDMA. The authors assume that the MEC

server has perfect prior knowledge of local computation

energy consumption, multi-user channel gains and input

data sizes of all users, which is costly or impractical in

most cases. A moving MEC system based on unmanned

aerial vehicle (UAV) is considered in [13]. The bit allo-

cation for uplink/downlink communication and for server

computation, as well as the UAV’s path planning, are

jointly optimized to minimize the mobile energy con-

sumption under the constraints on the UAV’s mobility

limitation and battery capacity. With the expectation of

small cell base station being densely deployed in future

cellular networks, a mobile device will have more com-

munication and computation resources from engaging the

help of multiple MEC servers [6], while MEC servers can

further assist each other on caching and processing capa-

bilities to satisfy mobile users’ customized task requests

[37].

Due to space limitations, interested readers are sug-

gested to refer to [1, 26] for complete reviewing of relevant

studies on MEC research.

2.2 Lyapunov optimization theory

Lyapunov optimization [29, 30] has received growing

interest in solving problems of joint performance opti-

mization and system stability in communication networks

and stochastic systems. In order to optimize a certain time-

average objective, the Lyapunov optimization algorithm is

developed to make control operations that greedily mini-

mize a bound on the so-called drift-plus-penalty expression

over fixed-length time periods. Lyapunov optimization

does not rely on statistics or prediction on stochastic

models, but instead the information of queue backlogs, for

making optimal control decisions in an online manner. This

makes it different from the traditional techniques such as

Markov Decision Process and Dynamic Programming,

which inevitably incur the ‘‘curse of dimensionality’’

problem where the computation complexity for obtaining

the optimal result rises with the system size [29, 38].

Heretofore, Lyapunov optimization has been extensively

adopted for solving the task and resource management

problems in several areas, e.g., cloud computing [11, 18],

mobile system [10, 11, 28], wireless communication

[19, 30], and smart grid [38]. Among them, our work is

mainly motivated by recent studies [28] and [19]. Refer-

ence [28] investigates the power-latency tradeoff in a MEC

system, and proposes an algorithm to determine the optimal

policy on local execution and remote offloading for power

consumption minimization. This work assumes that all

kinds of mobile computation tasks are offloadable, and they

can tolerant unbounded and even excessive execution
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latency. However, these assumptions are usually unrea-

sonable in practice [26, 34]. Reference [19] addresses a

latency-aware and energy-aware transmission problem in

heterogeneous wireless networks by jointly optimizing

subcarrier assignment, power allocation, and time fraction

determination. However, only the power consumption on

wireless transmission is taken into consideration in [19].

3 System models

In this paper, we consider a multi-user MEC system in

which a number of N ¼ f1; 2; :::;Ng mobile devices

(MDs) are served by one MEC server. This MEC server

could be a small-scale data center collocated with a cellular

base station deployed by some telecom operator [4]. Thus,

it can be accessed by all associated MDs through wireless

channels, and would execute offloaded computation tasks

from these MDs. We assume that time is divided into slots

t ¼ f0; 1; 2; :::g with equal length, and the slot length is

denoted as s.

3.1 Task arrival model

Generally, we classify mobile computation tasks into two

types, i.e., unoffloadable and offloadable [40]. Unoffload-

able tasks are executed using local CPU resources of the

MD, while offloadable tasks could be either executed

locally by a MD’s CPU or offloaded to the MEC server. In

every time slot t, computation tasks arrive at each MD. We

denote the number of unoffloadable and offloadable tasks

arriving at MD n by Wu;nðtÞ and Wo;nðtÞ, respectively. We

assume that the task arrival process is independent and

identically distributed (i.i.d) in each time slot [11]. It is also

independent of the current number of unprocessed tasks in

the system. Besides, we assume that there exists some

Wmax
u;n and Wmax

o;n such that Wu;nðtÞ 2 ½0;Wmax
u;n � and Wo;nðtÞ 2

½0;Wmax
o;n � for all n and t.

3.2 Local processing model

Typically, modern CPUs have the Dynamic Voltage and

Frequency Scaling (DVFS) capability [39]. Thus, MD n is

able to adjust its CPU clock speed fnðtÞ (in cycles/s) in each
time slot t, where fnðtÞ 2 ½0; f maxn �. The computation task (in

bits) requires a certain number of CPU processing resour-

ces per bit [21, 28], which is denoted by cn (in cycles/bit).

Then, the total number of locally executed tasks at MD

n can be expressed as

CnðtÞ ¼ sfnðtÞc�1
n ð1Þ

According to existing studies, the power consumption

model for CPU of MD n [16] is known as follows:

Pc;nðtÞ ¼ a1fnðtÞx þ a2 ð2Þ

where a1 and a2 are the empirical coefficients of power

consumption, while x ranges from 2 to 3 [15].

3.3 Computation offloading model

Compared with local processing, computation offloading

saves computation and energy resources for MDs, but will

incur additional time and energy in network communica-

tion. For simplicity, it is assumed that the MEC server has

unconstrained computation resources, and the processing

latency at the MEC server is negligible [28].

We consider a mobile system based on the OFDMA

technique, e.g., the 3GPP LTE. Here, we use the same

channel model as the one in [19]. There are in total

S subcarriers, each of which may be shared by multiple

devices in a time-division manner. The total bandwidth is

denoted by B, so each subcarrier has a portion of bandwidth

Bs ¼ B=S. Let PðtÞ,ðPs;nðtÞÞ, where Ps;nðtÞ 2 ½0;Pmax
s;n �

denote the wireless transmit power of MD n on subcarrier

s, and vðtÞ,vs;nðtÞ� 0 denote the time-sharing factor of

MD n on subcarrier s. The transmit rate (in bits/s) of MD

n on subcarrier s in time slot t is formulated as

rs;nðtÞ¼
vs;nðtÞBs log2 1þPs;nðtÞgs;nðtÞ

vs;nðtÞ

 !
;vs;nðtÞ[0

0; vs;nðtÞ¼ 0

8><
>:

ð3Þ

where gs;nðtÞ ¼ jhs;nðtÞj2
N0Bs

is the channel gain, hs;nðtÞ is the

frequency response of user n on subcarrier s, and N0 is the

single-sided spectral density of the additive white Gaussian

noise, respectively [19]. Besides, for all s and t, we havePN
n¼1 vs;nðtÞ� 1. We assume that there exists certain finite

constants gmaxs;n and rmaxs;n , such that gs;nðtÞ 2 ½0; gmaxs;n � and

rs;nðtÞ 2 ½0; rmaxs;n � for all subcarrier s, MD n, and time slot

t [19].

Accordingly, the transmit rate from MD n to the MEC

server over all subcarriers is calculated as

RnðtÞ ¼
XS
s¼1

rs;nðtÞ ð4Þ
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3.4 Task queue model

Based on the task type (i.e., unoffloadable/offloadable),

task requests arriving in MD n but not yet processed are

distinguished and queued separately in two different buffer

queues, Qu;n and Qo;n. The buffer queues are maintained in

memory of MD [11, 19, 21], and the queued tasks are

processed as per First Come First Served principle [29]. To

characterize the queue dynamics, we define QðtÞ,
ððQu;1ðtÞ;Qo;1ðtÞÞ; ðQu;2ðtÞ;Qo;2ðtÞÞ; :::; ðQu;NðtÞ;Qo;NðtÞÞÞ
as queue backlogs at the start of the time slot t, and

Qð0Þ ¼ 0. Then, the queuing dynamics [29] can be char-

acterized by

Qu;nðt þ 1Þ ¼maxfQu;nðtÞ � Cu;nðtÞ; 0g þWu;nðtÞ ð5Þ

Qo;nðtþ1Þ¼maxfQo;nðtÞ�Co;nðtÞ�Mo;nðtÞ;0gþWo;nðtÞ
ð6Þ

where Cu;nðtÞ 2 ½0;CnðtÞ� is unoffloadable tasks processed

locally at MD n in time slot t, Co;nðtÞ¼CnðtÞ�Cu;nðtÞ is

the portion of offloadable tasks processed locally at MD

n in t, and Mo;nðtÞ¼ sRnðtÞ is the other portion of

offloadable tasks processed remotely at the MEC server in

t. Accordingly, the queue stability constraint, which guar-

antees that the queue length is finite, can be formally

defined. Throughout this paper, the queue stability is

defined as follows:

Q ¼ lim
T!1

1

T

XT�1

t¼0

XN
n¼1

EfQu;nðtÞ þ Qo;nðtÞg\1 ð7Þ

In addition, a worst-case latency constraint is taken into

account for offloadable computation tasks. Worst-case

latency, denoted as Dmax
n in this paper, is the maximal time

that an offloadable task experiences in the queue before it is

scheduled [30]. This constraint is used to provide good

experience for mobile users with MDs running computa-

tion intensive tasks [2, 42]. As other work using Lyapunov

optimization [10, 11, 15, 28], in this paper we don’t take

into account the communication latency due to the com-

plexity it would bring to our problem [7, 8].

4 Optimal task and resource allocation
algorithm

In this section, a stochastic optimization programming is

firstly formulated to investigate the power minimization

problem in the given multi-user MEC system, subject to

resource/task allocation constraints and a bounded latency

requirement. Then, an online control algorithm framework,

referred to as OKRA, is developed to solve this problem by

adopting the Lyapunov optimization theory.

4.1 Problem formulation

In time slot t, the total power consumption of N MDs,

including the computing power consumed by MDs’ CPUs

and the transmit power for task offloading, is given by the

following:

PðtÞ ¼
XN
n¼1

Pc;nðtÞ þ
XS
s¼1

Ps;nðtÞ
" #

ð8Þ

In this paper, we are interested in making control decisions

on computation task scheduling, CPU frequency scaling,

transmit power allocation, and subcarrier bandwidth

assignment, so as to minimize the long-term time-average

expected power consumption while serving all task arrivals

within the capacity region. Based on the models above, our

problem could be formulated as a stochastic program P1:

P1 : min P, lim
T!1

1

T

XT
t¼0

EfPðtÞg ð9Þ

s.t. Q\1 ð10Þ

Co;nðtÞ þ Cu;nðtÞ ¼ CnðtÞ; Co;nðtÞ;Cu;nðtÞ� 0 ð11Þ

0� fnðtÞ� f maxn ð12Þ

0�Ps;nðtÞ�Pmax
s;n ð13Þ

0� vs;nðtÞ� 1 ð14Þ

XN
n¼1

vs;nðtÞ� 1 ð15Þ

Dmax
n \1

var. Co;nðtÞ; fnðtÞ;Ps;nðtÞ; vs;nðtÞ
ð16Þ

In problem P1, constraint (10) guarantees that all arrived

tasks could leave the queue within a finite time, so as to

maintain system queue stability. Constraints (11)–(15)

describe the feasible region for each decision variable.

Constraint (16) ensures that the worst-case latency for

offloadable tasks is finite.

The challenge here is how to link a deterministic latency

requirement to the control decision variables. To handle

this issue, we apply �-persistent service queue technique

[30] to establish the relationship between the queue occu-

pancy and the worst-case latency. Let Zn denote a latency-

aware virtual queue associated with Qo;nðtÞ, with

Znð0Þ ¼ 0. The virtual queue ZnðtÞ is updated according to

Znðt þ 1Þ ¼ maxfZnðtÞ � Co;nðtÞ �Mo;nðtÞ þ �n1fQo;nðtÞ[ 0g; 0g
ð17Þ

where 1fQo;nðtÞ[ 0g is an indicator function which takes the

value 1 if Qo;nðtÞ[ 0, and 0 otherwise. The intuition is that

ZnðtÞ has the same service process as Qo;nðtÞ, but has a
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different growing process that adds �n whenever queue Qo;n

is not empty. The parameter �n controls the growing rate of

Zn, which has an impact on the waiting time of queued

tasks. This guarantees that ZnðtÞ grows if there are tasks

remaining in Qo;nðtÞ that have not been processed for a long
time. In this manner, the size of Zn can provide a bound on

the latency of tasks in the queue Qo;n. If the proposed

algorithm could make control decisions to guarantee that

Qo;nðtÞ and ZnðtÞ have finite upper bounds, then we could

provide persistent service to the queued offloadable tasks

with bounded worst-case latency, as illustrated in

Lemma 1.

Lemma 1 For any given time slot t, suppose this MEC

system is controlled to ensure that Qo;nðtÞ\Qmax
o;n and

ZnðtÞ\Zmax
n , for some positive constants Qmax

o;n and Zmax
n .

Then, all tasks queued in Qo;n is processed with a maximal

latency of Dmax
n , given by

Dmax
n ¼ dðQmax

o;n þ Zmax
n Þ=�ne ð18Þ

Proof Fix any time slot t� 0. We prove this theorem by

contradiction. Specifically, we assume that all arrivals

Wo;nðtÞ are served at t þ d, where d[ dðQmax
o;n þ Zmax

n Þ=�ne.
Because queueing tasks are served in a First Come First

Served manner, arrived tasks during the time slot ½t þ
1; t þ d� are not served, and the served tasks are merely the

ones arrived before t. Then we have

Xtþd

s¼tþ1

½Co;nðtÞ þMo;nðtÞ� �Qo;nðtÞ �Wo;nðtÞ\Qo;nðtÞ\Qmax
o;n

ð19Þ

According to (17), we have Znðt þ 1Þ� ZnðtÞ�
Co;nðtÞ �Mo;nðtÞ þ �n. By summing it over ½t þ 1; t þ d�,
we further have Znðt þ dÞ � ZnðtÞ� �

Ptþd
s¼tþ1

½Co;nðtÞ þMo;nðtÞ� þ d�n. Rearranging and using the fact

that ZnðtÞ� 0 and Znðt þ dÞ� Zmax
n yields

Xtþd

s¼tþ1

½Co;nðtÞ þMo;nðtÞ� � d�n � Zmax
n ð20Þ

By combining (19) and (20), we get

d\ðQmax
o;n þ Zmax

n Þ=�n

which is contradictory with the assumption. This completes

the proof. h

According to Lemma 1, the worst-case latency con-

straint (16) could be equivalently transformed to a con-

straint on buffer occupancy as

Qo;nðtÞ\1; ZnðtÞ\1; 8n; t : ð21Þ

4.2 Lyapunov optimization

Let HðtÞ,½QðtÞ;ZðtÞ� be a concatenated vector of all real

queues QðtÞ, and virtual queues ZðtÞ. As a scalar measure

of the queue backlogs of all mobile devices, a quadratic

Lyapunov function [29] is defined as follows:

LðHðtÞÞ, 1

2

XN
n¼1

½Q2
u;nðtÞ þ Q2

o;nðtÞ þ Z2
nðtÞ� ð22Þ

An intuitive observation is that, a small value of LðHðtÞÞ
indicates that all the queue sizes are small. Accordingly,

the MEC system has strong stability. In order to push this

Lyapunov function towards a lower congestion state, we

define the conditional one-slot Lyapunov drift [29] as

DðHðtÞÞ,E½LðHðt þ 1ÞÞ � LðHðtÞÞjHðtÞ� ð23Þ

Following the drift-plus-penalty framework in [29], our

aim is to make control decisions on fnðtÞ, Ps;nðtÞ, vs;nðtÞ,
Co;nðtÞ and Cu;nðtÞ to minimize the upper bound of the

following drift-plus-penalty expression given HðtÞ:

DðHðtÞÞ þ VEfPðtÞjHðtÞg ð24Þ

where V � 0 is a coefficient which is selected to control the

tradeoff between power minimization (i.e., P1) and system

stability. The critical derivation step is to find an upper

bound on the expression in (24). Theorem 1 establishes this

bound.

Theorem 1 (Drift-plus-penalty Bound) For any schedul-

ing algorithm that satisfies constraints (11)–(15), all pos-

sible values of HðtÞ, and all parameters V, the drift-plus-

penalty expression in (24) is upper bounded by

DðHðtÞÞ þ VEfPðtÞjHðtÞg� Y

þ
XN
n¼1

EfQu;nðtÞWu;nðtÞ þ Qo;nðtÞWo;nðtÞ þ ZnðtÞ�njHðtÞg

þ
XN
n¼1

Ef½Qu;nðtÞ � Qo;nðtÞ � ZnðtÞ�Co;nðtÞjHðtÞg

þ
XN
n¼1

EfVPc;nðtÞ � Qu;nðtÞCnðtÞjHðtÞg

þ
XN
n¼1

E V
XS
s¼1

Ps;nðtÞ � ðQo;nðtÞ þ ZnðtÞÞMo;nðtÞjHðtÞ
( )

ð25Þ
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where

Proof Squaring both sides of the equation in (5) and (6),

and because ðmax½Q� b; 0� þ aÞ2 �Q2 þ a2 þ b2 þ
2Qða� bÞ for any Q� 0, b� 0, a� 0, we have

Q2
u;nðt þ 1Þ � Q2

u;nðtÞ

� ½Wmax
u;n �2 þ ðsf maxn c�1

n Þ2 þ 2Qu;nðtÞ½Wu;nðtÞ � Cu;nðtÞ�

¼ ½Wmax
u;n �2 þ ðsf maxn c�1

n Þ2 þ 2Qu;nðtÞ½Wu;nðtÞ � CnðtÞ þ Co;nðtÞ�

Q2
o;nðt þ 1Þ � Q2

o;nðtÞ

� ½Wmax
o;n �2 þ sf maxn c�1

n þ s
XS
s¼1

rmaxs;n

 !2

þ 2Qo;nðtÞ½Wo;nðtÞ � Co;nðtÞ �Mo;nðtÞ�

Squaring the equation for updating ZnðtÞ in (17), and using

the fact that ðmax½Q� bþ a; 0�Þ2 �Q2 þ maxða2; b2Þ þ
2Qða� bÞ for any Q� 0; b� 0; a� 0, we have

Z2
n ðt þ 1Þ � Z2

n ðtÞ� max �2n; sf maxn c�1
n þ s

XS
s¼1

rmaxs;n

 !2
2
4

3
5

þ 2ZnðtÞ½�n � Co;nðtÞ �Mo;nðtÞ�

Summing the three bounds above over n ¼ 1; :::;N, com-

bining them all, and taking expectations with respect to

HðtÞ, we get the one-slot conditional Lyapunov drift:

DðHðtÞÞ� Y þ
XN
n¼1

EfQu;nðtÞWu;nðtÞ þ Qo;nðtÞWo;nðtÞ

þ ZnðtÞ�njHðtÞg

þ
XN
n¼1

Ef½Qu;nðtÞ � Qo;nðtÞ � ZnðtÞ�Co;nðtÞjHðtÞg

�
XN
n¼1

EfQu;nðtÞCnðtÞjHðtÞg

�
XN
n¼1

EfðQo;nðtÞ þ ZnðtÞÞMo;nðtÞjHðtÞg

Now adding the penalty expression þVEfPðtÞjHðtÞg in

(24) to both sides, we can see that this theorem holds. h

4.3 Algorithm design

Following the design principle of Lyapunov optimization

theory, we introduce our Optimal tasK and Resource

Allocation (OKRA) algorithm in this section. The intuition

is to approximately minimize the upper bound obtained in

the right-hand-side of (25), subject to constraints (11)–(15).

We can decouple this problem into a series of independent

subproblems, as there are no coupling constraints or

objective functions between them. Then, these subprob-

lems can be solved simultaneously and independently in a

decentralized manner. Specifically, in each time slot t,

based on the online observations on HðtÞ, the OKRA

algorithm executes four phases of control operations,

including computation task scheduling, CPU frequency

scaling, power allocation and subcarrier assignment, and

queue update.

4.3.1 Computation task scheduling

For each MD n 2 N served by the MEC server, the

scheduling of computation tasks in time slot t is determined

with the following optimization problem P2:

P2 : min
Co;nðtÞ;Cu;nðtÞ

½Qu;nðtÞ � Qo;nðtÞ � ZnðtÞ�Co;nðtÞ

s.t. Co;nðtÞ þ Cu;nðtÞ ¼ CnðtÞ;

Co;n;Cu;n � 0 8n; t
ð26Þ

The problem P2 is a linear programming that is easy to

solve. We can obtain its optimal solution as

Co;nðtÞ ¼
CnðtÞ; Qu;nðtÞ\Qo;nðtÞ þ ZnðtÞ
0; otherwise

�
ð27Þ

For each MD n, it can calculate Co;nðtÞ as well as Cu;nðtÞ
independently based on its local information on Qu;nðtÞ,
Qo;nðtÞ and ZnðtÞ, according to (27).

4.3.2 CPU frequency scaling

For each MD n 2 N served by the MEC server, the CPU-

cycle frequency in time slot t could be optimized via

solving the following problem P3:

Y ¼
PN

n¼1f½Wmax
u;n �2 þ ½Wmax

o;n �2 þ ½ðsf maxn c�1
n Þ2 þ ðsf maxn c�1

n þ s
PS

s¼1 r
max
s;n Þ2� þmax½�2n; ðsf maxn c�1

n þ s
PS

s¼1 r
max
s;n Þ2�g

2
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P3 : min
fnðtÞ

VPc;nðtÞ � Qu;nðtÞCnðtÞ

s.t. 0� fnðtÞ� f maxn 8n; t
ð28Þ

By substituting CnðtÞ and Pc;nðtÞ in (1) and (2) and then

differentiating the objective function with respect to fnðtÞ,
we obtain the optimal solution to P3 as follows:

fnðtÞ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qu;nðtÞs
xVa1cn

x�1

s
; f maxn

( )
ð29Þ

For each MD n, it can calculate fnðtÞ independently based

on its local information on Qu;nðtÞ and other known

parameters, according to (29).

4.3.3 Power allocation and subcarrier assignment

According to (25) and the definition of Mo;nðtÞ and Ro;nðtÞ,
the power allocation and subcarrier assignment problem

can be determined by

P4 : min
PðtÞ;vðtÞ

XN
n¼1

XS
s¼1

½VPs;nðtÞ � ðQo;nðtÞ þ ZnðtÞÞsrs;nðtÞ�

s.t. 0�Ps;nðtÞ�Pmax
s;n 8s; n; t

0� vs;nðtÞ� 1 8s; n; t

XN
n¼1

vs;nðtÞ� 1 8s; t

ð30Þ

Theorem 2 Problem P4 is jointly convex in PðtÞ and vðtÞ.

Proof Denote f ðPs;nðtÞÞ ¼ log2ð1þ Ps;nðtÞgs;nðtÞÞ, and we

know that f ðPs;nðtÞÞ is concave in Ps;nðtÞ. Then, its per-

spective function gðPs;nðtÞ; vs;nðtÞÞ ¼ vs;nðtÞf ð
Ps;nðtÞ
vs;nðtÞÞ is also

concave in ðPs;nðtÞ; vs;nðtÞÞ [3]. Note that

rs;nðtÞ ¼ BsgðPs;nðtÞ; vs;nðtÞÞ, we know that the objective

function in P4 is jointly convex in PðtÞ and vðtÞ since it is

the sum of convex functions. Meanwhile, all constraints in

P4 are linear, and thus they will construct a convex set for

PðtÞ and vðtÞ. In all, PðtÞ minimizes a convex function over

a convex set, so it is a convex optimization problem. h

Accordingly, we can use standard convex optimization

techniques and tools to solve problem P4 [3]. However, the

generic convex algorithms would bring about relatively

high computation complexity, since these algorithms are

designed for general purposes [19]. Fortunately, the special

structure of problem P4 can be exploited to devise a low-

complexity and closed-form solution. Before we elaborate

solution details, we first introduce Lemma 2 in convex

optimization.

Lemma 2 According to [3], we always have

inf
x;y

f ðx; yÞ ¼ inf
x

~f ðxÞ ð31Þ

where ~f ðxÞ ¼ infy f ðx; yÞ.

Proof See [3]. h

This is a simple and general principle that can be used to

minimize a function by firstly minimizing over a certain

one of the variables and then minimizing over the rest ones.

According to Lemma 2, the problem P4 is solved by firstly

optimizing PðtÞ and then vðtÞ.
The function ~f of vðtÞ is defined as

min
PðtÞ

~f ðvðtÞÞ¼
XN
n¼1

XS
s¼1

½VPs;nðtÞ�ðQo;nðtÞþZnðtÞÞsrs;nðtÞ�

s.t. 0�Ps;nðtÞ�Pmax
s;n 8s;n; t

ð32Þ

Then the problem P4 can be transformed to

min
vðtÞ

~f ðvðtÞÞ

s.t. 0� vs;nðtÞ� 1 8s; n; t

XN
n¼1

vs;nðtÞ� 1 8s; t

ð33Þ

We solve (33) by differentiating ~f ðvðtÞÞ with respect to

PðtÞ and setting the derivatives equal to zero. Then the

optimal power allocation PðtÞ can be derived as:

Ps;nðtÞ ¼ min
ðQo;nðtÞ þ ZnðtÞÞsBs

V ln 2
� 1

gs;nðtÞ

� �þ
vs;nðtÞ;Pmax

s;n

� �
ð34Þ

where ½x�þ,max½0; x�. For each MD n, it can calculate

Ps;nðtÞ for each s 2 S independently based on its local

information on Qo;nðtÞ, ZnðtÞ, gs;nðtÞ, vs;nðtÞ, and other

known parameters, according to (34). The time complexity

for n is OðSÞ.
By substituting (34) into ~f ðvðtÞÞ, we can recast (33) to

min
vðtÞ

~f ðvðtÞÞ ¼
XN
n¼1

XS
s¼1

ws;nðtÞvs;nðtÞ

s.t. 0� vs;nðtÞ� 1 8s; n; t

XN
n¼1

vs;nðtÞ� 1 8s; t

ð35Þ
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where

ws;nðtÞ¼
ðQo;nðtÞþZnðtÞÞsBs

ln2
� V

gs;nðtÞ

� �þ

�ðQo;nðtÞþZnðtÞÞsBs log2
ðQo;nðtÞþZnðtÞÞsBsgs;nðtÞ

V ln2

� �� �þ
ð36Þ

Theorem 3 provides the solution to optimal subcarrier

assignment vðtÞ from (35).

Theorem 3 For any given subcarrier s 2 S, the optimal

assignment solution is given as follows:

vs;nðtÞ ¼
0; if ws;nðtÞ�0

1; if ws;nðtÞ\0 and n¼ argminx ws;xðtÞ
0; if ws;nðtÞ\0 and n 6¼ argminx ws;xðtÞ

8><
>:

ð37Þ

Proof As shown in (35), the assignment of S subcarriers

for MDs is independent. Thus, we can decompose (35) into

S subproblems, each of which is given as follows:

min
vðtÞ

XN
n¼1

ws;nðtÞvs;nðtÞ ð38Þ

s.t. 0� vs;nðtÞ� 1 8n; t ð39Þ

XN
n¼1

vs;nðtÞ� 1 8t ð40Þ

For minimizing the objective function (38), we should set

vs;nðtÞ ¼ 0 for MDs with ws;nðtÞ� 0. On the other hand, the

case when ws;nðtÞ\0 can be demonstrated from a simple

scenario with two MDs. For any n1; n2 2 N , we have

vs;n1ðtÞ þ vs;n2ðtÞ� 1 from (40). Then, (38) is equal to

ws;n1ðtÞvs;n1ðtÞ þ ws;n2ðtÞvs;n2ðtÞ

�ws;n1ðtÞð1� vs;n2ðtÞÞ þ ws;n2ðtÞvs;n2ðtÞ

�ws;n1ðtÞ þ ðws;n2ðtÞ � ws;n1ðtÞÞvs;n2ðtÞ

ð41Þ

Our aim is to minimize (41) subject to constraints (39) and

(40). If ws;n1ðtÞ\ws;n2ðtÞ\0, we have vs;n1ðtÞ ¼ 1 and

vs;n2ðtÞ ¼ 0. Otherwise, if ws;n2ðtÞ\ws;n1ðtÞ\0, we have

vs;n1ðtÞ ¼ 0 and vs;n2ðtÞ ¼ 1. We can easily use similar

approaches to deal with the cases with more than two

MDs. h

For each MD n, it can calculate ws;nðtÞ for each s 2 S

independently based on its local information on Qo;nðtÞ,
ZnðtÞ, gs;nðtÞ, and other known parameters, according to

(36). Then the MEC server will gather all ws;nðtÞ for each
s from each n to make the optimal assignment decision on

vðtÞ, according to Theorem (3). The time complexity for

the MEC server is OðNSÞ.

4.3.4 Queue update

Finally, the queues QðtÞ and ZðtÞ will be updated according
to (5), (6) and (17), by using the optimal results of Co;nðtÞ,
fnðtÞ, Ps;nðtÞ and vs;nðtÞ determined in the phases above.

4.4 Implementation issues

We note that OKRA makes online decisions based on the

knowledge of the queue sizes QðtÞ and ZðtÞ. It does not

need pre-knowledge on task arrivals and channel condi-

tions. This is very useful in practice since these information

are usually difficult to obtain or predict. Besides, the MEC

server only needs to gather ws;nðtÞ from each MD n 2 N ,

so as to determine vs;nðtÞ based on (37) for these MDs. All

the other control decisions and relevant calculations are

performed on each MD in a fully distributed manner. This

can significantly lighten the computation load and reduce

the implementation complexity, which is often desirable in

practice [19, 29]. Furthermore, as will be shown in next

section, we can analytically characterize the algorithm

performance. It is useful to facilitate the parameter tuning

in real-world scenarios.

5 Performance analysis

Theorem 4 Under the OKRA algorithm, we have the

following:

(a) The lengths of Qo;n and Zn are upper bounded by

constants Qmax
o;n and Zmax

n which are given respectively as

follows:

Qmax
o;n ,V� þWmax

o;n ð42Þ

Zmax
n ,V� þ �n ð43Þ

where � ¼ max
ðf maxn Þx�1

xa1cn
s ;

ln 2ðPmax
s;n þ 1

gmaxs;n
Þ

sBs

� �
:

(b) The maximal (i.e., worst-case) latency for tasks in

queue Qo;n is:

Dmax
n ,dð2V� þWmax

o;n þ �nÞ=�ne ð44Þ

(c) For any V [ 0, OKRA is able to stabilize the system,

and has a resulted time-average queue backlog and power

consumption that satisfy the following bound:

Q� Y þ VP
�

x
ð45Þ

P�P
� þ Y

V
ð46Þ
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where x[ 0 is a constant, and P
�
is the optimal value of

P1.

Proof (a) To prove (42), we need to prove Qo;nðtÞ�V� þ
Wmax

o;n for all t. Obviously, it holds for t ¼ 0 because

Qo;nð0Þ ¼ 0. Assume that the Eq. (42) holds for some t, we

induce that it also holds for t þ 1.

(1) if Qo;nðtÞ�V� , we can obtain the following:

Qo;nðt þ 1Þ ¼ maxfQo;nðtÞ � Co;nðtÞ �Mo;nðtÞ; 0g þWo;nðtÞ

�Qo;nðtÞ þWo;nðtÞ

�V� þWmax
o;n

(2) In the other case, if V�\Qo;nðtÞ�V� þWmax
o;n . In this

case, the following holds:

Qo;nðtÞ þ ZnðtÞ�Qo;nðtÞ[V�

Besides, we know that the system will maintain the state

that Qu;nðtÞ � Qo;nðtÞ þ ZnðtÞ according to (27). Based on

these results as well as (29) and (34), we can see that fnðtÞ,
Ps;nðtÞ and vs;nðtÞ would choose their maximal values [18],

i.e., f maxn , Pmax
s;n and 1, respectively. Thus, Co;nðtÞþ

Mo;nðtÞ ¼ Cmax
o;n þMmax

o;n . In case (2.1), if Qo;nðtÞ�
Cmax
o;n �Mmax

o;n � 0, refers to (6), we have

Qo;nðt þ 1Þ ¼ Wo;nðtÞ�Wmax
o;n �V� þWmax

o;n

In case (2.2), if Qo;nðtÞ � Cmax
o;n �Mmax

o;n [ 0, recall that the

queue Qo;n is assumed to be finite and thus in the opti-

mization process Cmax
o;n þMmax

o;n �Wmax
o;n �Wo;nðtÞ holds, we

have

Qo;nðt þ 1Þ ¼ Qo;nðtÞ � Cmax
o;n �Mmax

o;n

þWo;nðtÞ�Qo;nðtÞ�V� þWmax
o;n

Therefore, Qo;nðtÞ�V� þWmax
o;n for any t. The proof that

ZnðtÞ�V� þ �n for all t can be proved similarly, so we

omit it for brevity.

(b) This can be proved immediately from part (a) to-

gether with Lemma 1.

(c) According to (25), our algorithm attempts to

minimize the right-hand-side of the following expression:
DðHðtÞÞ þ VEfPðtÞjHðtÞg� Y þ VEfPðtÞjHðtÞg

þ
XN
n¼1

EfQu;nðtÞ½Wu;nðtÞ � Cu;nðtÞ�jHðtÞg

þ
XN
n¼1

EfQo;nðtÞ½Wo;nðtÞ � Co;nðtÞ �Mo;nðtÞ�jHðtÞg

þ
XN
n¼1

EfZnðtÞ½�n � Co;nðtÞ �Mo;nðtÞ�jHðtÞg

ð47Þ

Because we assume that the arrival process is within its

capacity region, there exists at least one stationary,

randomized control policy which is independent of the

current queue backlogs HðtÞ and can stabilize the queue

[19, 29], with

EfPðtÞjHðtÞg ¼ EfPðtÞg ¼ P
� ð48Þ

Since the arrival and service pattern of computation

tasks can be controlled, we know that there exists some

finite number x[ 0 such that the expectation of the

differences between services and arrivals of each queue is

larger than x [29]. Then, we have

EfCu;nðtÞ �Wu;nðtÞjHðtÞg�x ð49Þ

EfCo;nðtÞ þMo;nðtÞ �Wo;nðtÞjHðtÞg�x ð50Þ

EfCo;nðtÞ þMo;nðtÞ � �njHðtÞg�x ð51Þ

Plugging (48)–(51) into (47) results in:

DðHðtÞÞ þ VEfPðtÞjHðtÞg� Y þ VP
� � x

XN
n¼1

½Qu;nðtÞ

þ Qo;nðtÞ þ ZnðtÞ�

This inequality is in the exact form for application of

Lyapunov optimization, as shown in Theorem 4.2 of [29]).

Accordingly, we know that all queues are mean rate

stable [29]. Then, taking expectations over HðtÞ on both

sides, and using iterative expectation law yields:

EfLðHðt þ 1ÞÞ � LðHðtÞÞg þ VEfPðtÞg� Y þ VP
�

� x
XN
n¼1

E½Qu;nðtÞ þ Qo;nðtÞ þ ZnðtÞ�
ð52Þ

Using telescoping sums over t 2 f0; 1; :::; T � 1g, using the
fact that LðHðtÞÞ� 0 and LðHð0ÞÞ ¼ 0 for all t, and then

dividing both sides by T, we obtain

x
T

XT�1

t¼0

XN
n¼1

E½Qu;nðtÞ þ Qo;nðtÞ þ ZnðtÞ� � Y þ VP
� ð53Þ

Using the fact that EfZnðtÞg� 0 for all n, and taking limits

as T ! 1 result in the queue backlog bound given in (45).

To prove (46), we can use (52) to get

VEfPðtÞg� Y þ VP
� ð54Þ

Summing (54) over t ¼ 0; 1; :::; T � 1, and dividing both

sides by TV, we obtain

1

T

XT�1

t¼0

EfPðtÞg�P
� þ Y

V

Again, taking limits as T ! 1 results in the power cost

bound given in (46). h
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The theorem above shows the ½Oð1=VÞ;OðVÞ� power-
stability tradeoff for the problem P1. It also implies the

worst-case latency is upper bounded by OðVÞ. By tuning

the value of V, the near-optimal value of time-average

power consumption can be achieved while bringing in

larger queue size and higher latency. We verify these with

simulation experiments in what follows.

6 Experimental results

In this section, simulation results are given to demonstrate

the performance of our OKRA algorithm.

6.1 Simulation setting

Generally, the parameters in simulation experiments are

selected according to some empirical studies in literature.

Unless stated otherwise, in all the experiments these

parameters are set as follows. We consider a MEC system

serving N ¼ 3 MDs, each of which has S ¼ 12 subcarriers

[12]. For each MD n 2 N , its CPU computation capacity

f maxn ¼ 1:6 GHz [16], and cn ¼ 737:5 cycles/bit [28]. We

choose a1 ¼ 0:33	 10�18, a2 ¼ 0:1 and x ¼ 3 [16] for

Power consumption P Queue backlog Q

Service latency of Qo,n

(a) (b)

(c)

Fig. 1 System performance under different value for the control parameter V

Table 1 Comparison on upper bounds of Qo;1 under different V values

V 0 1 4 7 10 13 16 19 22 25 30

TH 2 3 4 6 7 9 10 11 13 14 16

EX 2 2 3 4 4 5 6 6 6 6 7

Wireless Networks

123



power parameters in (2). The channel power gain gs;nðtÞ is
exponentially distributed with unit mean 1 [28]. Besides,

Pmax
s;n ¼ 0:2 W [12], and Bs ¼ 1:8 MHz [12, 28]. The length

of one time slot s ¼ 1 ms [28]. All task arrivals follows the

Poisson Process [11] with Wmax
u;n ¼ Wmax

o;n ¼ 2 kB/Slot [28].

Note that our algorithm does not require any special setting

for this traffic pattern [11].

To fully study the OKRA performance, we compare it

with two heuristic solutions for different verification pur-

poses. The first one (‘‘Greedy’’) is a baseline online control

algorithm, which makes greedy control decisions in each

time slot [11, 29]. This greedy algorithm always chooses

fnðtÞ ¼ f maxn and Ps;nðtÞ ¼ Pmax
s;n , and randomly assigns a

given subcarrier to any one of the MDs. Based on Theo-

rem 2.4 in [29], a simple control policy is used to enforce

that Qo;n will be preferentially served if the average amount

of incoming workload is larger than that of outgoing

workload in any time slot [11]. It is intuitively that the

Greedy algorithm will guarantee good latency performance

for offloadable tasks. The second algorithm (‘‘CPU_Only’’)

only uses local CPU resources, and processes the two types

of tasks in a round-robin fashion [35]. It is obvious that this

algorithm can not provide any guarantees on stability and

latency.

Power consumption P Queue backlog Q

Service latency of Qo,n

(a) (b)

(c)

Fig. 2 System performance under different value for the time scale T
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6.2 Results and analysis

6.2.1 The impact of V

We fix T ¼ 1000 and �n ¼ 2 for all n, and then run simu-

lations with different V values. Figure 1 presents the sim-

ulation results with the growth of parameter V. We have

three observations about these results. First, we can see that

the time-average power consumption of MDs achieved by

OKRA falls significantly, and converges quickly to very

close to the optimal value as V increases (Fig. 1a). Mean-

while, the time-average queue backlog grows linearly as

the value of V increases (Fig. 1b). It clearly shows that the

tradeoff between power consumption and system stability

can be adjusted by tuning the parameter V, and quantita-

tively confirms the ½Oð1=VÞ;OðVÞ� power-stability trade-

off in part (c) of Theorem 4. Second, though Greedy

indeed has relatively smaller backlog (Fig. 1b) and lower

latency (Fig. 1c) than OKRA, it will bring about much

more (i.e., 14.9–117.7%) energy consumption (Fig. 1a) for

task processing. That’s because Greedy does not take

energy saving into consideration in its design. Third, it is

obvious that the maximal service latency of offloadable

tasks never exceeds the corresponding theoretical bound

(Fig. 1c). The results indicate that the increasing rate of the

actual maximal latency can be well bounded by a linear

function of V, which is consistent with part (b) of

Theorem 4.

Furthermore, we compare the theoretical (TH) and

experimental (EX) upper bounds for queue backlogs of

Qo;1 in the same scenarios. Table 1 presents the compar-

ison results, from which we can find that the queue back-

logs are smaller than the corresponding theoretical bounds,

especially when V is relatively large. These observations

are consistent with (42) in part (a) of Theorem 4.

6.2.2 The impact of T

We fix V ¼ 30 and �n ¼ 2 for all n, and then change T from

100 to 1000 time slots, so as to investigate the character-

istics of different time-scales of long-term operation. The

simulation results are plotted in Fig. 2. It is clear that

changing T has relatively small impacts on system stability

and algorithm performance. The fluctuations on power

consumption, queue size, and queueing latency of

offloadable tasks are [- 5.26%, 1.52%], [- 8.37%,

2.55%], and [- 2.60%, 1.98%], respectively, for OKRA,

and are [- 0.0009%, ? 0.0009%], [- 10.74%, 21.52%],

and [- 0.31%, 0.23%], respectively, for Greedy. These

results confirm that both OKRA and Greedy can provide

stable performance guarantee over time. According to

Theorem 2.4 in [29], such a dynamic queueing system will

be kept stable if we could make the average arrival

workload not greater than the average processed workload

in the long run. We ensure this by minimizing the Lya-

punov drift (23) in OKRA, and by the simple control policy

(described in 6.1) in Greedy.

6.2.3 The impact of �n

We fix V ¼ 30 and T ¼ 1000, and then run simulations

with different �n values. Actually, it is not necessary to

verify each �n [18]. Thus, without loss of generality, we

take only �1 into consideration, and study its impact on

system performance. Figure 3 presents the results, in which

we can find that both the queue size and the service latency

of offloadable tasks decrease when the parameter �1
increases. According to the definition of queue Zn in (17)

and the task scheduling rule in (27), a larger �n makes the

queue ZnðtÞ grow faster, so OKRA is more inclined to serve

queue Qo;n than queue Qu;n. These results are consistent

Average queue backlog of Qo,1 Service latency of Qo,1(a) (b)

Fig. 3 System performance under different value for the control parameter �1
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with the theoretical bounds on queue size and service delay

given in (18) and (44).

6.2.4 The impact of workload intensity

We fix V ¼ 30, T ¼ 1000 and �n ¼ 2 for all n, and then run

simulations with different arrival rates of computation

tasks. The results are depicted in Fig. 4. When the arrival

rates are relatively low, i.e.,Wmax
u;n ¼ Wmax

o;n ¼ 1 kB/Slot, the

local mobile CPUs can provide sufficient computation

resources for task processing. Therefore, both OKRA and

CPU_Only can satisfy task arrivals in the given period of

1000 time slots. Meanwhile, CPU_Only has a better

latency performance than OKRA, since the latter trades off

processing latency for energy saving. However, when the

arrival rates are relatively high, i.e., Wmax
u;n ¼ Wmax

o;n ¼ 2 kB/

Slot, the performance of CPU_Only is restricted to a large

extent because of the constrained computation capacity of

mobile CPUs. In the given period, CPU_Only is only able

to process 59% of arrived tasks, while OKRA processes

nearly all tasks with the aid of MEC server. Furthermore,

CPU_Only brings about excessive service latency for

computation tasks because of the severe queue congestion.

Based on these results, we verify the necessities and ben-

efits of MEC systems for improving user experience in

computation services.

Average arrived & proccessed tasks Average task processing latency

Maximal task processing latency

(a) (b)

(c)

Fig. 4 System performance under different workload intensity (Wmax
u;n , Wmax

o;n )
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7 Conclusion

This paper studies how to minimize power consumption of

mobile devices in MEC systems. By leveraging Lyapunov

optimization, we designed an online control algorithm

called OKRA in response to stochastic task arrivals and

time-varying channel conditions. OKRA provides simple

and distributed approaches to make optimal decisions on

computation task scheduling, CPU frequency scaling,

transmit power allocation and subcarrier bandwidth

assignment with low complexity. Unlike conventional

statistical offline or prediction-based approaches, OKRA

does not need to pre-learn any statistical knowledge on

system dynamics. The theoretical analysis and simulation

results have verified the capability of OKRA in terms of

power optimality, queue stability and latency guarantee.

As future work, we are going to extend this work to

scenarios with capacity constraints on computation

resources for MEC servers [41]. Another direction is to

further evaluate the OKRA algorithm in a prototype

implementation of MEC system [33], which would be

interesting and also very challenging.
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