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Abstract: With the recent proliferation of Internet-of-Things (IoT), enormous amount of
data are produced by wireless sensors and connected devices at the edge of network. Con-
ventional cloud computing raises serious concerns on communication latency, bandwidth
cost, and data privacy. To address these issues, edge computing has been introduced as
a new paradigm that allows computation and analysis to be performed in close proxim-
ity with data sources. In this paper, we study how to conduct regression analysis when
the training samples are kept private at source devices. Specifically, we consider the las-
so regression model that has been widely adopted for prediction and forecasting based on
information gathered from sensors. By adopting the Alternating Direction Method of Mul-
tipliers (ADMM), we decompose the original regression problem into a set of subproblems,
each of which can be solved by an IoT device using its local data information. During the
iterative solving process, the participating device only needs to provide some intermediate
results to the edge server for lasso training. Extensive experiments based on two datasets
are conducted to demonstrate the efficacy and efficiency of our proposed scheme.
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1 Introduction
In recent years, the fast penetration of Internet-of-Things (IoT) devices with various em-
bedded sensors have significantly changed the way of information gathering, processing
and sharing. Generally, it is impractical to run computation intensive applications at the
IoT devices, since these devices are often constrained by on-board resources and battery
capacity. This motivates development of IoT cloud platforms allowing offloading compu-
tation and analysis tasks to a resourceful centralized cloud [Truong and Dustdar (2015)].
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Nevertheless, the cloud-based solution introduces unpredictably long latency for data com-
munication through the wide area network, and incurs huge additional bandwidth occupa-
tion that may be beyond the capabilities of today’s Internet [Ha, Pillai, Lewis et al. (2013)].
Furthermore, it would also bring about a number of privacy threats and security challenges
[Zhou, Cao, Dong et al. (2017)]. Therefore, it is more preferable to move computation
and analysis to a close proximity of the IoT devices, i.e., to the edge of the network. It
is envisioned that edge computing would be a promising supplement to cloud computing
[Shi, Cao, Zhang et al. (2016)], and make as much of an impact on human society as the
latter.
By edge computing, it is feasible to conduct collaborative machine learning [Portelli and
Anagnostopoulos (2017)] in real-time on site, obtaining useful information from data col-
lected by a variety of IoT devices. For instance, the roadside base-station can use regres-
sion analysis to forecast short-term traffic flow by analyzing data originated from proximate
GPS-enabled vehicles, video cameras and roadway sensors [Zhou, Cao, Dong et al. (2017);
Shi, Cao, Zhang et al. (2016); Xi, Sheng, Sun et al. (2018)]. Another good example is e-
quipment maintenance, which uses multi-sensor information (e.g., temperature, sound and
vibration) to construct classifiers for fault detection and diagnosis [Kwon, Hodkiewicz, Fan
et al. (2016)]. In such systems, edge analytics is usually performed in a centralized fashion,
i.e., each involved device sends its own data samples to a dedicated edge server for train-
ing and building learning models. However, this centralized solution suffers from three
drawbacks. Firstly, many machine learning algorithms require to solve a particular con-
vex optimization problem. According to previous studies [Dhar, Yi, Ramakrishnan et al.
(2015); Boyd, Parikh, Chu et al. (2011)], the traditional centralized solver does not scale
well with increasing volume of data. Secondly, not all edge servers are as resourceful as
cloud servers to run sophisticated tools for single-node in-memory analytics [Dhar, Yi, Ra-
makrishnan et al. (2015); Ismail, Goortani, Karim et al. (2015)]. Thirdly, IoT-generated
data may contain private and sensitive information (e.g., healthy state of wearable users)
that should not be directly exposed to the edge server or other devices [Zhou, Cao, Dong
et al. (2017); Gong, Fang and Guo (2016)]. To tackle these challenges, it is desirable that
the learning solution for edge computing can jointly take scalability, performance and pri-
vacy issues into consideration.
In this paper, we are particularly interested in lasso (i.e., least absolute shrinkage and s-
election operator [Tibshirani (1996)]), a classic linear regression technique that combines
regularization and variable selection together for prediction and forecasting. This tech-
nique has already been used in a lot of IoT applications, e.g., battery availability prediction
for IoT devices [Longo, Mateos and Zunino (2018)], and internal temperature forecast
for smart buildings [Spencer, Alfandi and Al-Obeidat (2018)]. Specifically, we develop a
distributed, collaborative learning solution that utilizes sampling data from multiple IoT
devices for training lasso regression models. Based on the Alternating Direction Method
of Multiplies (ADMM) [Boyd, Parikh, Chu et al. (2011)], the proposed scheme naturally
decomposes the target optimization problem of lasso into small sub-problems that can be
solved by each participating device using its local data. Unlike centralized solutions [Lon-



A Distributed ADMM Approach for Collaborative Regression Learning 495

go, Mateos and Zunino (2018); Spencer, Alfandi and Al-Obeidat (2018)], in our scheme the
edge server only needs to collect locally trained intermediate parameters from IoT devices,
and performs a simple aggregate operation to obtain the objective lasso model. The edge
server and IoT devices work in such a collaborative way for multiple iterations until the
lasso model converges. We have conducted extensive experiments based on two datasets
with various system configurations. The experimental results show that our scheme quickly
converges to near-optimal performance in a few tens of iterations. As compared to other
benchmark solutions, it performs well in terms of efficiency and scalability, while obtaining
a resulting lasso model with modest accuracy.
The rest of this paper is organized as follows. A brief review of existing work is presented
in Section 2. Section 3 describes the system model and derives the problem formulation.
In Section 4, we elaborate and discuss the proposed ADMM-based algorithm. Section 5
illustrates and discusses simulation results. Finally, we conclude this paper in Section 6.

2 Related work
Traditional machine learning algorithms [Tibshirani (1996); Spencer, Alfandi and Al-Obeidat
(2018)] and tools [Boyd, Parikh, Chu et al. (2011)] are implemented using a fully central-
ized architecture, which requires a dedicated server with powerful computation capability
and huge amount of memory. However, they fail to scale well with increasing size of data
in the big data era. To address this challenge, various approaches have leveraged distributed
data-parallel platforms to develop distributed machine learning libraries, such as Apache
Mahout and Spark MLlib [Dhar, Yi, Ramakrishnan et al. (2015)]. These platforms and
libraries can significantly speed up the large-scale data analytics by coordinating the op-
erations of multiple servers [Richter, Khoshgoftaar, Landset et al. (2015)]. Nevertheless,
they are not suitable to be applied for model learning in edge computing, due to resource
constraints [Shi, Cao, Zhang et al. (2016)] and privacy concerns [Zhou, Cao, Dong et al.
(2017)].
Considering that convex optimization is at the core of most machine learning algorithms,
recent years have seen a number of distributed learning algorithms based on iterative meth-
ods [Dhar, Yi, Ramakrishnan et al. (2015)], which use successive approximations to come
closer to the optimal solutions in each iteration. Among them, Stochastic Gradient Descent
(SGD) is the most influential technique for solving linear prediction problems, e.g., logis-
tic regression. Zinkevich et al. [Zinkevich, Weimer, Smola et al. (2010)] propose the first
parallel SGD algorithm that brings very little overhead on both I/O and communication.
Meeds et al. [Meeds, Hendriks, Al Faraby et al. (2015)] develop a SGD-based javascript
library that enables ubiquitous compute devices to run training algorithms in web brows-
ing environments. With similar motivation to ours, McMahan et al. [McMahan, Moore,
Ramage et al. (2017)] study the SGD-based distributed model training by iteratively aggre-
gating locally trained parameters from edge devices. Although very efficient and easy to
implement, SGD algorithms generally have a slow convergence rate due to their stochastic
nature [Dhar, Yi, Ramakrishnan et al. (2015)]. How to accelerate the convergence of SGD
still remains as a challenging issue [Allen-Zhu (2017)].
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Recent research progresses on ADMM [Boyd, Parikh, Chu et al. (2011)] make it a com-
petitive technique for solving distributed optimization and statistical learning problems.
ADMM integrates the fast convergence characteristics of the multipliers method with the
decomposability of the dual ascent approach, and can quickly converge to modest accuracy.
This technique can be used to solve many supervised learning algorithms on regression and
classification [Dhar, Yi, Ramakrishnan et al. (2015)]. For example, Zhang et al. [Zhang,
Lee and Shin (2012)] propose a distributed linear classification algorithm to solve the sup-
port vector machine problem. Gong et al. [Gong, Fang and Guo (2016)] design a privacy-
preserving scheme for training a logistic regression model based on distributed data from
multiple users. However, the private aggregation mechanism used in Gong et al. [Gong,
Fang and Guo (2016)] are proved to be inefficient and not suitable for resource-constrained
devices [Joye and Libert (2013)]. The work most relevant to ours is Bazerque et al. [Baz-
erque, Mateos and Giannakis (2010)], in which a consensus-based distributed algorithm
is developed for in-network lasso regression. This algorithm is designed for networked
systems with no central coordination, e.g., wireless sensor network. A device needs to
communicate with its one-hop neighbors frequently for updating intermediate parameters,
resulting in heavy communication overhead and low convergence rate in large networks.

3 System model and problem formulation
3.1 System model

We consider edge systems consisting of an edge server, and N homogeneous IoT devices
performing a common sensing task. The IoT device continuously generates sensory data,
and transforms the raw data in a certain time duration into a feature vector. Each fea-
ture vector consists of more than one predictor variables, and corresponds to an response
variable. The edge server is responsible for performing data analysis and modelling the re-
lationship between feature vectors and response variables. The resulting model is learned
and built in a collaborative fashion at the edge server based on data samples from all par-
ticipating devices.
The prediction model considered in this work is a lasso regression model [Tibshirani (1996)],
which is a classic linear regression technique widely used for prediction and forecasting.
Here we briefly introduce its basics. Given input training data set {(xi, yi), i = 1, . . . , N},
where xi ∈ Rn denotes a feature vector and yi ∈ R denotes the corresponding response
variable, the lasso model solves the following optimization problem:

min
1

2

N∑
i=1

(wTxi + b− yi)2 + λ ‖w‖1 , (1)

where w ∈ Rn is the weight vector, b ∈ R is the intercept, and λ > 0 is the regularization
parameter. With the trained lasso model (w, b) and a given feature vector x ∈ Rn, we can
estimate the value of response variable ŷ as follows:
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ŷ = wTx+ b. (2)

Although very effective in practice, current lasso implementations [Longo, Mateos and
Zunino (2018); Kwon, Hodkiewicz, Fan et al. (2016)] generally require that the participat-
ing devices contribute their native data to the edge server for model training. This would
cause privacy leakage problems [Zhou, Cao, Dong et al. (2017)], as the native data could
reveal private or sensitive information about device users. We assume that standard network
security mechanisms [Zhou, Cao, Dong et al. (2017)], such as encryption and authentica-
tion, are applied to protect data storage and network communication of IoT devices from
outsider attacks. Nevertheless, the edge server may not be trustworthy, and can still be a
potential source of information leakage.

3.2 Problem formulation

Based on the basic model introduced in (1), we investigate the problem of collaborative
lasso learning in edge computing systems. Specifically, it is assumed that each IoT device
i ∈ {1, . . . , N} generate a set of data samples Di = {(xij , yij), j = 1, . . . ,Mi}, where
xij ∈ Rn denotes a feature vector, yij ∈ R denotes the response variable of xij , and Mi

denotes how many data samples are contributed by i. Then, we hope to find a distributed
solution to address the following minimization problem:

min
1

2

N∑
i=1

Mi∑
j=1

(wTxij + b− yij)2 + λ ‖w‖1 , (3)

where w ∈ Rn, and b ∈ R.

4 Distributed lasso learning via ADMM
According to the problem formulation and our analysis presented above, it is inappropriate
to take the centralized approaches [Kwon, Hodkiewicz, Fan et al. (2016); Spencer, Alfandi
and Al-Obeidat (2018)] as a solution in edge computing scenarios. A desirable solution
should take the requirements on scalability, performance and privacy into consideration.
This motivates us to develop an efficient and scalable scheme that enables collaborative
lasso learning in a distributed manner.

4.1 A briefing on ADMM

The proposed scheme is based on ADMM, which follows a decomposition-coordination
process. The target optimization problem is firstly decomposed into a set of small sub-
problems, and then the solutions to these sub-problems are coordinated to obtain the global
optimal result. Specifically, ADMM solves optimization problems taking the following
forms:
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min f(x) + g(y)

s.t. Ax+By = C,

x ∈ X, y ∈ Y,
(4)

where x ∈ Rn, y ∈ Rm, f and g are two convex functions, A ∈ Rl×n and B ∈ Rl×m are
relation matrices, C ∈ Rl is a relation vector, and X and Y are non-empty convex subsets
of Rn and Rm, respectively.
The augmented Lagrangian of problem (4) is formed by adding a l2 norm penalty to the
objective function:

Lρ(x, y, z) =f(x) + g(y) + zT (Ax+By − C)

+
ρ

2
‖Ax+By − C‖22,

(5)

where z ∈ Rl is the dual variable, and ρ is a positive penalty parameter.
Then, the problem (4) is solved in a iterative fashion, by updating x, y, z sequentially and
alternatively. Specifically, in the t-th iteration, the updates of variables are as follows:

xt+1 = argmin
x
Lρ(x, y

t, zt),

yt+1 = argmin
y
Lρ(x

t+1, y, zt),

zt+1 = zt + ρ(Axt+1 +Byt+1 − C).

(6)

The proofs on optimality and convergence of ADMM have been given in Bertsekas et al.
[Bertsekas and Tsitsiklis (1989)]. Besides, it is revealed by empirical studies that this tech-
nique often achieves an acceptable solution with modest accuracy after dozens of iterations
[Boyd, Parikh, Chu et al. (2011)].

4.2 Algorithm design

However, ADMM cannot be applied to problem (3) directly, as the coupling of variables
makes it impossible to separate the objective function over each set of variables. In this
case, a set of auxiliary variables {(wi, bi), i = 1, . . . , N} are introduced to reformulate
problem (3) as:

min
1

2

N∑
i=1

Mi∑
j=1

(wT
i xij + bi − yij)2 + λ‖w‖1

s.t. wi = w, bi = b, i = 1, . . . , N.

(7)
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By enforcing equality constraints, the new problem (7) is obviously equivalent to the orig-
inal problem (3). Particularly, {(w, b)} can be regarded as the global model parameters at
the edge server, while {(wi, bi), i = 1, . . . , N} can be regarded as the local model parame-
ters at each IoT device i. Now we are able to separate the objective function over {(w, b)}
and {(wi, bi), i = 1, . . . , N}. The augmented Lagrangian of problem (7) can be obtained
as:

Lρ(ξ, ψ, ζ) =
1

2

N∑
i=1

Mi∑
j=1

(wT
i xij + bi − yij)2 + λ‖w‖1

+

N∑
i=1

((wi −w)T ζi,w + ζi,b(bi − b))

+

N∑
i=1

ρ

2
((wi −w)T (wi −w) + (bi − b)2),

(8)

where for simplicity we define ξ = {(w, b)}, ψ = {(wi, bi), i = 1, . . . , N}, and ζ =
{(ζi,w, ζi,b), i = 1, . . . , N} as the dual variables associated with the equality constraints in
(7). The problem is then solved by updating ξ, ψ, and ζ sequentially. In each iteration t,
the updates are performed as follows:
1. ξ-update: The update of ξ is performed by solving the following subproblem:

min
ξ

λ‖w‖1 +
ρN

2
wTw − ρwT

N∑
i=1

wt
i

−wT
N∑
i=1

ζti,w +
ρN

2
b2 − ρb

N∑
i=1

bti − b
N∑
i=1

ζti,b.

(9)

By denotingA as the mean of a vectorA, we can rewrite (9) as:

min
ξ

λ‖w‖1 +
1

2
ρNwT (w − 2wt − 2ζ

t
w

ρ
)

+
1

2
ρNb(b− 2b

t − 2ζ
t
b

ρ
).

(10)

Since problem (10) is convex but non-differentiable, we use the subgradient calculus tech-
nique [Nesterov (2013)] in convex analysis to obtain a closed-form solution. The solution
is given by
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wt+1 =


wt + ζ

t

w

ρ −
λ
ρN , wt + ζ

t

w

ρ > λ
ρN

0, wt + ζ
t

w

ρ ∈ [− λ
ρN ,

λ
ρN ]

wt + ζ
t

w

ρ + λ
ρN , wt + ζ

t

w

ρ < − λ
ρN

(11)

bt+1 = b
t
+
ζ
t
b

ρ
(12)

2. ψ-update: The update of ψ is performed by solving the following subproblem:

min
ψ

1

2

N∑
i=1

Mi∑
j=1

(wT
i xij + bi − yij)2

+

N∑
i=1

ρ

2
wT
i (wi − 2wt+1 +

2ζti,w
ρ

)

+

N∑
i=1

ρ

2
bi(bi − 2bt+1 +

2ζti,b
ρ

)

(13)

This problem is decomposable into N subproblems over all IoT devices, among which the
device i only needs to solve its local subproblem as follows:

min
ψi

1

2

Mi∑
j=1

(wT
i xij + bi − yij)2

+
ρ

2
wT
i (wi − 2wt+1 +

2ζti,w
ρ

)

+
ρ

2
bi(bi − 2bt+1 +

2ζti,b
ρ

)

(14)

The new subproblem (14) is a typical nonlinear programming problem, which is difficult to
solve due to its complexity. Even standard tools like YALMIP can be used as solvers, they
are still too heavyweight to run on IoT devices. Thus, we propose to to solve subproblem
(14) by using the conjugate gradient method [Nesterov (2013)] in two sequential steps.
Firstly, we consider the objective function of (14) as a function h of wi, and let bi = bti to
find the optimal w∗i that minimizes h. Then, we consider the objective function of (14) as
a function h′ of bi, and let wi = w∗i to find the optimal b∗i that minimizes h′. After these
two steps, we obtain the solution as wt+1

i = w∗i , and bt+1
i = b∗i .

Due to space limitations, we only introduce the algorithm for w∗i in Algorithm 1, while b∗i
can be obtained in a similar way. In Algorithm 1, k denotes the iteration time, p denotes
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the conjugate direction, ε denotes the convergence criteria. Particularly, we design a simple
heuristic to search for the optimal step size σ from a given set S, with the help of two
auxiliary parameters s1 and s2 [Hager and Zhang (2006)]. That’s because the objective
function h(wi) does not contain a symmetric and positive-definite matrix, which is required
by standard conjugate gradient for determining the value of σ [Nesterov (2013)]. Algorithm
1 presents the parameter values used in our experiments in Section 3. Note that the choice
of suitable values for these parameters depends on the scale of variable values in h(wi).

Algorithm 1 Conjugate gradient algorithm for obtaining w∗i
1: Initialize k ← 0, ε← 10−5,w0

i ← 0, p0 ← −5h(w0
i ), S ← {−1, 1}, s1 ← 1×10−2,

and s2 ← 2× 10−2.
2: repeat
3: σk ← s1
4: for each δ ∈ S do
5: if h(wi + δs2p

k) < h(wi + σkpk) then
6: σk ← δ
7: end if
8: end for
9: wk+1

i ← wk
i + σkpk

10: βk ← ‖5h(wk+1
i )‖2

‖5h(wk
i )‖2

11: pk+1 = −5 h(wk+1
i ) + βkpk

12: k ← k + 1
13: until Convergence: ‖5h(wk

i )‖ ≤ ε
14: w∗i ← wk

i

3. ζ-update: After obtaining ξt+1 and ψt+1, we finally update the dual variables as:

ζt+1
i,w = ζti,w + ρ(wt+1

i −wt+1) (15)

ζt+1
i,b = ζti,b + ρ(bt+1

i − bt+1) (16)

The entire process of algorithm execution in our scenarios is summarized in Algorithm
2. In this work, the primal residual r and the dual residual s [Boyd, Parikh, Chu et al.
(2011)] are used together as convergence criterion, and they are expected to be less than
their respective tolerances εpri and εdual. According to Boyd et al. [Boyd, Parikh, Chu
et al. (2011)], εpri and εdual can be reasonably chosen using an absolute tolerance εabs and
a relative tolerance εrel. In each iteration, a participating device submits locally trained
intermediate parameters (wi, bi) and (ζi,w, ζi,b) to the edge server. The edge server then
computes and updates the global model parameters (w, b) by averaging the parameters
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gathered from devices. The edge server and IoT devices work in such a collaborative way
for multiple iterations until the lasso model converges. Note that in the above process, all
training samples are kept locally at the device’s side, and protected from leakage to the
edge server or other devices.

Algorithm 2 Distributed lasso algorithm in edge computing

1: The edge server initializes t← 0, w0 ← 0, b
0 ← 0.

2: Each IoT device i initializes t← 0, ζ0i,w ← 0, ζ0i,b ← 0.
3: repeat
4: Given (wt

i , b
t
i) and (ζti,w, ζ

t
i,b) from each device i ∈ {1, . . . , N}, the edge server

computes wt, b
t
, ζ

t
w, and ζ

t
b. According to (11) and (12), the server updates wt+1

and bt+1, and broadcasts the results to all devices.
5: Given wt+1 and bt+1, each device i solves the subproblem (14) independently to

obtain wt+1
i and bt+1

i .
6: Each device i updates its dual variables ζt+1

i,w and ζt+1
i,b according to (15) and (16).

7: Each device i sends the results of (wt+1
i , bt+1

i ) and (ζt+1
i,w , ζ

t+1
i,b ) to the edge server.

8: t← t+ 1
9: until Convergence: ‖rt‖2 ≤ εpri and ‖st‖2 ≤ εdual

5 Performance evaluation
In this section, we conduct simulation experiments to evaluate the performance of our
ADMM-based algorithm.

5.1 Experiment settings

We evaluate our algorithm on two datasets, i.e., a synthetic one and a real-world one. The
synthetic dataset contains 1500 data samples, each of which includes nine dimensional fea-
ture vector. The generation of data follows the description in Boyd et al. [Boyd, Parikh,
Chu et al. (2012)]. Using this dataset, we can focus on evaluating the algorithm perfor-
mance under different parameter settings, regardless of the impact of data quality. The
experiment results are shown in Figs. 1-4. Then, we use a well-known diabetes dataset
from [Efron, Hastie, Johnstone et al. (2004)] to further investigate the algorithm perfor-
mance under realistic conditions. This dataset contains 442 data samples, each of which
includes ten dimensional feature vector. The experiment results are shown in Fig. 5. In
all experiments, we split the given dataset into 70% training data and 30% validation da-
ta. Unless otherwise specified, the simulation parameters are given as follows: N = 10,
λ = 1.0, ρ = 1.0, εabs = 0.2, and εrel = 0.5.
To provide performance benchmarks for the proposed algorithm, we compare it with t-
wo baselines, namely centralized training approach and independent training approach. As
stated in Section 1, the centralized approach generally can obtain the optimal result, but suf-
fers from problems of scalability, performance and privacy. In the independent approach,



A Distributed ADMM Approach for Collaborative Regression Learning 503

each participating device trains its own model independently with local data samples. This
approach overcomes the challenges of scalability and privacy at the cost of modeling per-
formance, and the result accuracy is highly correlated with both the size and the quality of
the training set.

5.2 Experiment results

Convergence of our algorithm. Fig. 1 depicts the convergence property of our ADMM
algorithm. The left-hand plot (Fig. 1(a)) shows the change of objective function value
w.r.t. iterations, while the right-hand plot (Fig. 1(b)) shows the progress of the primal and
dual residual norm w.r.t. iterations. The objective value computed using the centralized
algorithm is taken as the global optimal result. As shown in Fig. 1, we observe that our al-
gorithm approaches very close to optimum after 30 iterations, and finally converges within
58 iterations according to the given stopping criterion.
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Figure 1: Convergence of the ADMM-based algorithm

To fully investigate the convergence performance, we conduct random independent exper-
iments for 11 times to compare the number of iterations for achieving convergence. As
shown in Fig. 2, our algorithm takes at most 138 iterations to converge, and the fastest run
only takes 17 iterations. For 80% of the time, our algorithm achieves convergence within
120 iterations. On the other hand, the centralized algorithm takes at least 580 iterations to
converge, and even 800 iterations in the worst case. These results clearly indicate that our
algorithm converges significantly faster than the centralized approach.
Impacts of parameter settings. Next we study the algorithm performance under different
N , ρ, and λ values (with other parameters fixed). All these results are plotted in Fig. 3. As
shown in Fig. 3(a), our algorithm can always converge to the same optimal objective value
no matter how many IoT devices are involved. We can observe that with the increase of N ,
our algorithm converges with only moderate increment of iterations. These observations
demonstrate the scalability of this algorithm as well as its associated overhead for device
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Figure 2: CDF of the number of iterations to achieve convergence

coordination. Similarly, varying ρ also has little impact on the final optimization objective,
as shown in Fig. 3(b). However, a smaller value of ρ tends to speed up the dual update and
achieve a faster convergence. From Fig. 3(c), we can see that changing λ only determines
the expected optimization objective in (3), but has neglectable impacts on the convergence
and its rate of the algorithm.
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Figure 3: Convergence performance of the algorithm with varying parameter settings

Comparison of modeling performance. In order to evaluate model performance, we
use the two most common metrics in regression analysis, including Mean Squared Error
(MSE) and Adjusted R-Squared (Adjusted-R2) [Spencer, Alfandi and Al-Obeidat (2018);
Kmenta and Rafailzadeh (1997)]. MSE measures the expected squared distance between
actual and predicted values. It must be non-negative, and a value closer to 0 indicates a
better model. Adjusted-R2 is used to measure the correlation between actual and predicted
values. It can take on any value no greater than 1, and a value closer to 1 indicates a better
fit. Since the performance of the independent approach relies on the size of local training
set, we randomly partition the original dataset into N training subsets, and compare the
performance of algorithms under different device numbersN . It is noted that whenN = 1,
the independent approach does actually equate with the centralized approach.
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As shown in Fig. 4(a), the average MSE of the independent approach keeps increasing
with the increment of N . The variance of MSE values also becomes larger as N increases,
implying that different IoT devices with same-sized data are more likely to obtain distinct
training results. The MSE of our algorithm is always kept at about 0.01, and does not
depend on N . From Fig. 4(b), we observe that our algorithm obtains a steady value of
Adjusted-R2 around 0.985. The independent approach has a slightly better performance
than ours when N < 60, but its performance degrades significantly when N ≥ 60. An IoT
device may even obtain a negative Adjusted-R2 when N = 90, meaning that its resulting
model doesn’t fit the data [Kmenta and Rafailzadeh (1997)]. Note that for the centralized
algorithm, MSE = 0.000451 and Adjusted-R2 = 0.998639. From these results, we know
that the lasso models trained by the independent approach may not be robust for individual
IoT devices, due to the limitation on data size and the lack of data diversity. Our algorithm
can always converge to near-optimal and obtain modestly accurate models comparable to
that of centralized approach, by utilizing data samples contributed by many IoT devices.
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Figure 4: Comparisons on model performance of different algorithms using different met-
rics

Results of real-world dataset. Furthermore, we evaluate our algorithm on the diabetes
dataset in Efron et al. [Efron, Hastie, Johnstone et al. (2004)] using the same metrics. Due
to space limitation, typical experimental results are chosen to be plotted in Figs. 5(a)-5(c),
respectively.
We obtain some new observations that are different from those presented above and need
special attention. Firstly, as shown in Fig. 5(a), the objective value of our algorithm falls
off spectacularly fast during the initial 3 iterations, and converges after 25 iterations. We at-
tribute this fast convergence rate to the significantly small size of this dataset. Secondly, the
performance of the independent approach is obviously the worst among all three algorithm-
s, according to Figs. 5(b) and Fig. 5(c). We can notice that start from N = 10, its MSE
increases sharply to values far greater than 0 and those of other algorithms. Meanwhile,
its Adjusted-R2 decreases quickly and directly to negative values. These observations in-
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dicate that when training data are irregularly distributed overall, which is very common in
reality, a good model is hardly to obtain by individual devices due to the severe lack of data
diversity. Thirdly, our algorithm still achieves a good modeling performance comparable
to that obtained by centralized approach.
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Figure 5: Experimental results on the diabetes dataset

6 Conclusion
In this paper, we present a collaborative learning scheme for training lasso regression mod-
els based on data samples from IoT devices in edge computing. The target optimization
problem of lasso is solved in a distributed fashion by leveraging ADMM, while the partici-
pating devices only need to share indispensable intermediate results with the edge server for
model training. Simulation results on two typical datasets demonstrate that the proposed
scheme can quickly converge to near-optimal within dozens of iterations, and significantly
outperforms other baseline solutions in performance evaluation. Our future work involves
implementing our scheme on a real edge computing platform to evaluate its feasibility and
performance.
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