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Mobile edge computing (MEC) provides cloud-computing services for mobile devices to offload intensive computation tasks to
the physically proximal MEC servers. In this paper, we consider a multiserver system where a single mobile device asks for
computation offloading to multiple nearby servers. We formulate this offloading problem as the joint optimization of com-
putation task assignment and CPU frequency scaling, in order to minimize a tradeoff between task execution time and mobile
energy consumption..e resulting optimization problem is combinatorial in essence, and the optimal solution generally can only
be obtained by exhaustive search with extremely high complexity. Leveraging the Markov approximation technique, we propose
a light-weight algorithm that can provably converge to a bounded near-optimal solution. .e simulation results show that the
proposed algorithm is able to generate near-optimal solutions and outperform other benchmark algorithms.

1. Introduction

In recent years, mobile devices (MDs) have become an
indispensable tool for communication, information, and
entertainment in our daily life. However, finite battery ca-
pacities and limited computation resources pose intractable
challenges for satisfying user-experience requirements.
Computation offloading is recognized as a promising so-
lution to cope with such a problem, by migrating compu-
tation tasks from mobile devices via wireless access to more
powerful servers [1]. Mobile cloud computing (MCC) has
been considered as one of the potential solutions. It is
commonly assumed that the implementation of MCC relies
on data exchange with a centralized cloud through wide area
networks [2]. Nevertheless, MCC imposes huge traffic load
on mobile networks and brings high communication latency
due to the long distance from MDs to the cloud.

Mobile edge computing (MEC), which deploys MEC
servers directly at the base stations using generic-computing

platforms, is a newly proposed solution for the above
problem. In this paradigm, ITand cloud-computing services
are provided in close proximity to mobile devices [3]. By
endowing ubiquitous wireless access networks (e.g., mac-
rocell and small-cell base stations) with resource-rich
computing infrastructures, MEC is envisioned to provide
pervasive and agile computation augmenting services when
and where are needed. Since the concept of MEC was
proposed by European Telecommunications Standards In-
stitute (ETSI), it has attracted increasing attentions from
academic researchers. In particular, one of the key design
issues in MEC is resource allocation [3]: should a compu-
tation task be processed locally by a MD’s CPU or remotely
by a MEC server, and if the latter is chosen, how many
resources should be allocated to this task? .is question
stems from the basic tradeoff between the cost of task off-
loading and the reduction in task execution time brought by
offloading. While conceptually simple, it is challenging to
make optimal decisions since many factors are coupled and
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the solution space is very large. Various approaches have
been proposed to tackle this resource allocation problem in
many kinds of scenarios [3, 4]. Some of them focused on
single-user cases, while the others focused on multiuser
cases. However, in these studies, the MD is assumed to be
associated with only a single MEC server. With the ex-
pectation of small-cell/femtocell base stations been mas-
sively deployed in future networks, a MD can choose to
offload its tasks to multiple nearby MEC servers with
computational capabilities, other than only one MEC
server [5].

.is paper focuses on system optimization in scenarios
where a single MD is capable of scaling its CPU frequency
and allocating computation tasks to multiple MEC servers.
Specifically, we exploit the diversity in terms of task as-
signment and CPU frequency to make optimal control
decisions so as to minimize the tradeoff between task exe-
cution time and mobile energy consumption. We formulate
such a problem as a combinatorial optimization, NP-hard
problem. Inspired by the Markov approximation framework
proposed in [6], we have devised an efficient approximation
algorithm with near-optimal performance. In summary, the
main contributions of this paper are as follows:

(1) We propose to exploit the task assignment decision
and the computation scaling capability to jointly
optimize the tradeoff between latency and energy in
a multiserver MEC system and then formulate this as
a nonlinear combinatorial optimization problem.

(2) We devise an approximation algorithm based on the
Markov approximation framework [6] to solve the
proposed problem efficiently. .is algorithm can
find the near-optimal solution by implementing
a Markov chain over all feasible configurations and
performing state transitions [6–8]. .en, we in-
vestigate key characteristics of the designed Markov
chain and analyze the algorithm in terms of per-
formance optimality, approximation gap, and error
robustness.

(3) We conduct simulation experiments to demonstrate
performance of our Markov approximation-based
algorithm under various parameter settings. .e
simulation results show that this algorithm can
generate near-optimal solutions and remarkably
outperforms other benchmark algorithms.

.e rest of this paper is organized as follows. Section 2
reviews related work. Section 3 presents the system model
and the problem definition. .en, the proposed Markov
approximation-based algorithm is introduced in Section 4.
Section 5 demonstrates the simulation results. Finally,
Section 6 summarizes the conclusions and outlines future
work.

2. Related Work

From the computation perspective, MEC offers a new service
environment characterized by proximity, efficiency, low la-
tency, and high availability, making computation offloading

a promising paradigm for MDs [3]. To this end, three im-
portant issues have to be taken into account, namely, resource
allocation, data partition, and optimization objective.

Since offloading introduces additional communication
overhead, a key technique challenge is how to allocate
computation and communication resources so as to balance
the energy-performance tradeoff and support the user-ex-
perience demands [4]. Recent years have seen increasing
research progresses on resource allocation for both single-
user [9–11] and multiuser MEC systems [12–14]. Wang et al.
[9] investigated computation offloading in MEC by jointly
optimizing a MD’s CPU speed, transmit power, and off-
loading ratio to achieve two different design objectives, i.e.,
minimizing energy consumption and minimizing execution
time, of the MD. Liu et al. [10] adopted a Markov decision
process approach to solve the power-constrained latency
minimization problem in MEC, where a MD schedules its
computation tasks based on queue size, execution state, and
channel information. You et al. [11] proposed a framework
in which a MD can not only process computations tasks at
local CPU or offload them to theMEC server but also harvest
energy from the base station by microwave power transfer
(MPT). .e offloading problem in multiuser cases is more
complex than that in single-user cases. You et al. [12] studied
the optimal resource allocation for a multiuser MEC system
with both time division multiple access (TDMA) and or-
thogonal frequency division multiple access (OFDMA).
Chen et al. [13] proposed a game theoretic scheme for the
computation offloading decision making problem in mul-
tiuser scenarios and demonstrated that the designed game
always admits a Nash equilibrium. Sardellitti et al. [14]
designed an iterative algorithm based on successive convex
approximation techniques to minimize the overall users’
energy consumption with latency constraints in a MIMO
multicell system. However, the work introduced above only
considered the scenario where a MD only associates with
a single edge server. Since the future mobile networks will be
heterogeneous due to dense deployment of base stations
with different capabilities [3], we can exploit such a diversity
to provide more offloading options and sufficient resource
capacities to MDs for guaranteeing low service latency and
satisfactory user experience [15].

Generally, computation offloading could be performed
in two fashions, i.e., full offloading and partial offloading [9].
In full offloading, the mobile application has to be executed
as a whole either locally at the MD or remotely at the MEC
server [14]. Compared with full offloading, partial offloading
takes advantage of parallelism between theMD and theMEC
server, so it is much more capable to satisfy stringent latency
requirement. However, existing work [9, 16] often assumed
full granularity of data partition, i.e., the offloaded data could
be partitioned as small as possible. In practice, a mobile
application may contain some indivisible tasks or files that
cannot be separated into parts of any size [5].

Computation offloading affects both mobile energy
consumption and task execution time. On the one hand, in
situations where the MD with latency-sensitive applications
has a stringent requirement on energy consumption, it is
essential to apply latency-oriented solutions [9, 10, 17] to
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utilize limited energy efficiently, so as to shorten the exe-
cution time as much as possible. On the other hand, in order
to prolong the MD’s lifetime, energy-oriented solutions
[9, 11, 12, 14] are proposed to minimize the overall energy
consumption of MDs while guaranteeing the latency re-
quirement of mobile applications. As far as we know, only
a few studies [5, 13, 15] have focused on optimizing these
two metrics simultaneously.

While recognizing their significance, our work is dif-
ferent from and complementary to existing studies. We
investigate a joint optimization of task offloading and
computation scaling problem in a multiserver MEC system,
with the objective to minimize the tradeoff between latency
and energy. Besides, in system modeling, we take into ac-
count many practical aspects that were missing or un-
considered in previous work investigating relevant
problems. To our best knowledge, the proposed problem has
not been explored by prior work.

3. System Model and Problem Formulation

3.1. System Model. Let us consider a MD that has a set of
tasksM to be processed. It can choose to either process these
tasks at local CPU or offload them to any one among the
nearby MEC servers N. We assume that the wireless base
stations operate on orthogonal wireless channels so that any
two of them will not interfere each other. We leverage the
binary variables xm, ym,n ∈ 0, 1{ }, ∀m ∈M, and ∀n ∈N, to
represent the task assignment, i.e.,

xm �
1, if task m is processed at local CPU,

0, if task m is processed at a MEC server,
􏼨

ym,n �
1, if task m is assigned to MEC server n,

0, otherwise.
􏼨

(1)

A task must be processed locally or remotely, i.e., the
aforementioned |M| tasks could be separated into |N| + 1
disjoint sets. To ensure this, we impose the following
constraint:

xm + 􏽘
n∈N

ym,n � 1, ∀m ∈M. (2)

A computation taskm is characterized by a three-tuple of
parameters, (am, bm, cm), where am denotes the total number
of CPU cycles needed to accomplish the taskm, while bm and
cm denote the size of computation input data (in bits) and
output data (in bits), respectively. In this work, we assume
that the MD can apply the methods such as offline mea-
surements [18] and call-graph analysis [13] to obtain the
values of am, bm, and cm. We now analyze the computation
overhead in terms of both execution time and energy
consumption for both local and offloading approaches.

(1) Local computing: If the MD chooses the local com-
puting approach, it will execute the computation task
m locally using its own CPU. Let ψMD be the
computation capability (i.e., CPU cycles per second)
of the MD. Given the decision profile

x � xm􏼈 􏼉 ∈ 0, 1{ }|M| and ψMD, the execution time of
computing a batch of tasks at local CPU is given by

TMD x,ψMD( 􏼁 � 􏽘
m∈M

xm

am

ψMD
. (3)

For the computational energy, we have that

EMD x,ψMD( 􏼁 � Υ1ψ
θ
MD + Υ2􏼐 􏼑TMD x,ψMD( 􏼁, (4)

where (Υ1ψθ
MD + Υ2) denotes the computational power of

the MD. As in [19], θ ranges from 2 to 3, while Υ1 and Υ2 are
parameters depending on chip architecture. .eir values can
be obtained by the measurement approach in [19]. Using
dynamic voltage frequency scaling (DVFS) technology
[4, 14, 19], the MD could adaptively adjust ψMD to shorten
execution time or reduce energy consumption. For example,
the Nexus S smartphone has six levels of CPU speeds, each of
which matches with some specific voltage [19]. In this work,
we assume that ψMD takes value in some finite and discrete
set Ψ � ψ|ψmin ≤ψ ≤ψmax􏼈 􏼉, where ψmin and ψmax are
minimum and maximum CPU frequency of the MD,
respectively.

(2) MEC offloading: If the MD chooses the MEC off-
loading approach, it will offload the computation
task m to one of the MEC servers via wireless access.
.is chosen server will execute task m on behalf of
the MD. Such computation offloading would incur
extra overhead in terms of time and energy for
transmitting the computation input and output data.
We assume that each MEC server n can provide the
MD with fixed service rate (i.e., CPU cycles per
second) ψn, which is determined according to the
MEC computing service contract subscribed by the
MD from its mobile operator [13]. .e average
uplink and downlink data rates, denoted by rULn and
rDLn , are also assumed to be known by the MD before
task processing by applying the methods in [1, 5]. For
simplicity, the data transmission and the task pro-
cessing are assumed to be nonoverlapping and
noninterfering with each other, which means the
uploading, computing, and downloading steps are
carried out sequentially [5]. Given the decision
profile y � ym,n􏽮 􏽯 ∈ 0, 1{ }|M|×|N|, the total execution
time of computing a batch of tasks at MEC server n
can be given as

Tn(y) � 􏽘
m∈M

ym,n

am

ψn

+
bm

rULn

+
cm

rDLn

􏼠 􏼡. (5)

.eMD’s energy consumption on wireless transmission
can be calculated as

EMEC(y) � Ptx 􏽘
m∈M

􏽘
n∈N

ym,n

bm

rULn

+ Prx 􏽘
m∈M

􏽘
n∈N

ym,n

cm

rDLn

,

(6)

where Ptx and Prx denote the transmitting and receiving
power, respectively.
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3.2. ProblemFormulation. In this work, we hope to optimize
two metrics, i.e., the tasks’ execution time and the MD’s
energy consumption. Because the MD and MEC servers
process tasks in parallel, the time metric can be given by

T x, y,ψMD( 􏼁 � max TMD x,ψMD( 􏼁,max
n∈N

Tn(y)􏼈 􏼉􏼚 􏼛. (7)

.e energy consumption metric can be given by

E x, y,ψMD( 􏼁 � EMD x,ψMD( 􏼁 + EMEC(y). (8)

However, these two objectives are coupled by xm, ym,n􏽮 􏽯,
and ψMD, so they cannot be optimized independently and
contemporaneously. To investigate the tradeoff between
them, we construct a unified objective function (or system
utility) as

U x, y,ψMD( 􏼁 � ξTT x, y,ψMD( 􏼁 + ξEE x, y,ψMD( 􏼁, (9)

where ξT, ξE ∈ [0, 1] denote the weighting parameters of
execution time and energy consumption for the MD. In this
way, the latency and energy metrics can be taken into the
decision making at the same time, while ξT and ξE reflect the
relative importance between them. If the MD is running
some application that is sensitive to the latency, it can set
ξT⟶ 1 and ξE⟶ 0 when making decision. If the MD is
at a low battery state and cares more about the energy
consumption, it can set ξT⟶ 0 and ξE⟶ 1 when making
decision. Such a weighted sum approach has been exten-
sively used for modeling similar multiobjective optimization
problems [2].

In conclusion, the optimization problem is formulated as

P1:minU x, y,ψMD( 􏼁. (10)

s.t. constraint (2),

var: ψMD ∈ Ψ,

xm, ym,n ∈ 0, 1{ }, ∀m ∈M,∀n ∈N.
(11)

.e problem P1 is essentially a mixed-integer nonlinear
programming, which is known as NP-hard. Furthermore,
this problem is also a combinatorial optimization, in which
the global optimal solution consists of decisions for each
computation task and the MD’s CPU. Since there is no
computationally efficient way to get the exact optimal so-
lution, we propose to develop a fast polynomial approxi-
mated algorithm that solves problem P1 based on the
Markov approximation framework [6].

4. Markov Approximation and
Algorithm Design

Markov approximation is a recently proposed technique for
solving combinatorial network optimization problems [6].
Generally, this framework is consisted of two steps: log-sum-
exp approximation and constructing problem-specific
Markov chains that yield efficient parallel implementation
for solving problem approximately..e proofs on optimality
and convergence for Markov approximation have been
presented in [6].

4.1. Log-Sum-Exp Approximation. Let f � x, y,ψMD􏼈 􏼉 ∈ F
be a feasible solution to problem P1, whereF denotes the set
of all feasible solutions that satisfy the constraints (2).
Furthermore, we denote utility Uf as the system’s objective
function corresponding to a given configuration f, so
problem P1 can be represented by minf∈FUf. .erefore, the
equivalent minimum weight independent set (MWIS)
problem of P1 is

min
p≥ 0

􏽘
f∈F

pfUf,

s.t. 􏽘
f∈F

pf � 1,
(12)

where the probability pf indicates the percentage of time
that the system is in configuration f. Regarding Uf as the
weight of f, the problem is to search for a minimumweighted
configuration. Following the Markov approximation
framework [6], the log-sum-exp approximation of
minf∈FUf yields

Umin ≈ −
1
β
log 􏽘

f∈F
exp −βUf􏼐 􏼑⎛⎝ ⎞⎠, (13)

where β is a positive constant that affects the approximation
performance. Let |F| be the size of setF, the approximation
accuracy is known as follows:

min
f∈F

Uf −
1
β
log|F|≤−

1
β
log 􏽘

f∈F
exp −βUf􏼐 􏼑⎛⎝ ⎞⎠≤ min

f∈F
Uf.

(14)

It is clear that, as β⟶∞, the approximation gap
approaches 0 and thus the approximation becomes exact.

According to [6], the log-sum-exp approximation in (13)
is equivalent to solve the following problem P2:

P2 : min
p≥ 0

􏽘
f∈F

pfUf +
1
β

􏽘
f∈F

pf log pf,

s.t. 􏽘
f∈F

pf � 1.

(15)

Since P2 is a convex problem, we can solve the
Karush–Kuhn–Tucker (KKT) conditions [20] and obtain the
optimal solution as

p
∗
f �

exp −βUf􏼐 􏼑

􏽐f′∈Fexp −βUf′􏼐 􏼑
, ∀f ∈ F. (16)

However, it is difficult to solve problem P2 directly
because this requires complete information on F which is
typically unknown due to the large solution space. However,
if we can sample the configuration space F from the dis-
tribution p∗f in (16), i.e., time-sharing among different
configurations f according to their portions p∗f, we actually
solve problem P2 and thus problem P1 approximately [7].
Toward this, the key is to design a problem-specific Markov
chain, which models feasible configurations as states,
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achieves stationary distribution p∗f, and allows parallel
construction among the |M| tasks.

4.2. Markov Chain Design. It has been proved that there
exists at least one continuous-time time-reversible ergodic
Markov chain with stationary distribution p∗f in (16) and [6].
To construct such a time-reversible Markov chain, we let
f, f′ ∈ F be two states of the Markov chain and use qf,f′ as
the transition rate from state f to f′. It suffices to design qf,f′
to ensure the following two conditions: (a) any two states are
reachable from each other, and (b) the detailed balance
equation is satisfied, i.e., p∗fqf,f′ � p∗

f′qf′ ,f, ∀f, f′ ∈F. .e
above two sufficient requirements allow a large space to
design a Markov chain in terms of the state-space structure
and transition-matrix design.

First, the transition rate between any two states can be set
to zero, if they are still reachable from any other states. .at
is, we only allow direct links between two states that can be
reached by performing only one task migration.

Second, for two assignments with direct transitions, e.g.,
f and f′, we design the transition rate between them as

qf,f′ �
1

|M|c

exp −βUf′􏼐 􏼑

max exp −βUf′􏼐 􏼑, exp −βUf􏼐 􏼑􏽮 􏽯
, (17)

where c> 0 is a constant denoting the mean time of state
transition [6].

4.3. Markov Approximation-Based Algorithm. According to
Markov approximation [6], in our system, a configuration f
consists of |M| computation tasks using one of its local
configurations. If all tasks run individual continuous-time
clocks and wait for performance-dependent amounts of time
before switching their local configurations, we can imple-
ment the target Markov chain such that transitions only
happen between two configurations f and f′ when they
differ from each other by only one task’s local configuration.

.e implementation based on our designed Markov
chain is shown in Algorithm 1..is algorithm is explained as
follows. .e MD initializes a dedicated thread for each of its
computation tasks. At first, each thread randomly selects
a feasible target device that satisfies constraint (2) for
m ∈M. Besides, the CPU frequency ψMD is also randomly
picked from the candidate set Ψ. In stage 1, each thread is
associated with an exponentially distributed random
number with a mean equal to c and counts down according
to this number. In stage 2, when the timer of task m expires,
the dedicated thread first sends RESET signals to other
threads for notifying them the upcoming potential transition
f′ and then randomly generates a new configuration f′ on
task assignment and frequency scaling. .e thread m will
transit to f′ with the probability pf,f′ or stay at the current
configuration f with the probability 1−pf,f′ . In stage 3,
when the dedicated thread serving for a task receives
a RESET signal, it terminates its current countdown process
and then transits to stage 1 again. Due to the properties of
the underlyingMarkov chain, this algorithmwill converge to

near-optimal configuration in probability after a sufficient
number of time periods.

According to pf,f′ in Algorithm 1, we have two typical
transition scenarios as follows. First, if Uf ≥Uf′ , then
qf,f′ � 1. Second, if Uf <Uf′ and β⟶∞, then
qf,f′ ⟶ 0. .erefore, the design of pf,f′ in (17) is likely to
lead the system to a configuration that minimizes the ob-
jective in problem P1.

Theorem 1. Algorithm 1 realizes a time-reversible Markov
chain with the stationary distribution shown in (16).

Proof. From the construction rule for the state-space
structure of a Markov chain, we can know that all con-
figurations can reach each other within a finite number of
transitions, so the generated Markov chain is irreducible.
Moreover, it is a finite-state ergodic Markov chain with
a unique stationary distribution. Now we show that the
stationary distribution of this Markov chain is exactly
(16).

In Algorithm 1, the transition probability of taskm from
f to f′ is pf,f′ . .en from a system-wide view, the proba-
bility of transition due to the selection of a single taskm from
the task set M is pf,f′/|M|. Furthermore, because task as-
signment is activated according to the countdown timer
mechanism with a rate of c, it follows that the transition rate
from state f to f′ is

qf,f′ �
pf,f′

|M|c
�

1
|M|c

exp −βUf′􏼐 􏼑

max exp −βUf′􏼐 􏼑, exp −βUf􏼐 􏼑􏽮 􏽯
.

(18)

Using (16) and (18), we can obtain that
p∗fqf,f′ � p∗

f′qf′ ,f, ∀f, f′ ∈F; that is, the detailed balance
equations hold. Finally, we know that the constructed
Markov chain is time-reversible, and its stationary distri-
bution is exactly (16) according to.eorem 1.3 and.eorem
1.14 in [21]. □

4.4. Performance Guarantee. In practice, it is possible that
we can obtain only an inaccurate measurement or estimate
of Uf for any f ∈ F, due to imprecise measurements or
local estimates [8]. As a result, the perturbed Markov chain
may not converge to the desired stationary distribution p∗f,
but a suboptimal steady-state distribution. .is observation
motivates us to study on the performance gap in the
presence of the perturbation errors.

For each configuration f ∈F with Uf, we assume that
the corresponding perturbation error belongs to the
bounded region [−Θf,Θf], where Θf is the inaccuracy
bound. .en, the perturbed Uf takes only one from the
2nf + 1 discrete values [Uf −Θf, . . . , Uf − (1/nf)Θf,

Uf, Uf + (1/nf)Θf, . . . , Uf + Θf], where nf is a positive
constant. Moreover, with probability δ(f,j), the perturbed
Uf takes the value Uf + (1/nf)Θf, ∀j ∈ −nf, . . . , nf􏽮 􏽯

and 􏽐
nf

j�−nf
δ(f,j) � 1.
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Based on the analysis on perturbation errors in [22], we
have the following results.

Theorem 2(a). ?e stationary distribution of the perturbed
Markov chain is

pf �
φf exp −βUf􏼐 􏼑

􏽐f′∈Fφf′ exp −βUf′􏼐 􏼑
, (19)

where φf � 􏽐
nf

j�−nf
δ(f,j) exp(β((jΘf)/nf)).

Theorem 2(b). ?e optimality gaps without and with per-
turbation errors are shown as follows:

0≤Uavg −Umin ≤
log|Ψ| +|M|log(|N| + 1)

β
, (20)

0≤Uavg −Umin ≤
log|Ψ| +|M|log(|N| + 1)

β
+Θmax, (21)

where Umin � minf∈FUf is the optimal system utility for
problem P1, Uavg � 􏽐f∈Fp∗fUf is the expected system utility
with the original perfect Markov chain, Uavg � 􏽐f∈FpfUf

is the expected system utility with the perturbed Markov
chain, and Θmax � maxf∈FΘf is the maximum perturbation
error.

Proof (a). We consider an extended Markov chain in which
each state f is expanded to 2nf + 1 states (f, j),
∀j � −nf, . . . , 0, 1, . . . , nf with the following transition
rates:

q(f,j), f′ ,j′( ) �
δ f′,j′( )

|M|c

exp −β Uf′ + j′/nf′􏼐 􏼑Θf′􏼐 􏼑􏼐 􏼑

max exp −β Uf′ + j′/nf′􏼐 􏼑Θf′􏼐 􏼑􏼐 􏼑, exp −β Uf + j/nf􏼐 􏼑Θf􏼐 􏼑􏼐 􏼑􏽮 􏽯
, (22)

(1) .e following procedures execute on the MD.
(2) procedure Initialization
(3) for m ∈M do
(4) xm⟵0, and ym,n⟵0, ∀n ∈N
(5) Randomly assign m to the MD (i.e., xm⟵1) or a MEC server n ∈N (i.e., ym,n⟵1)
(6) end for
(7) Randomly pick a feasible ψMD from Ψ
(8) Transit to STAGE 1
(9) end procedure
(10) procedure Stage 1: Wait (m)
(11) Generate an exponentially distributed timer tm with mean equal to c

(12) Begin counting down by tm

(13) end procedure
(14) procedure Stage 2: Hop (m)
(15) If tm expires then
(16) Send RESET signals to m′, ∀m′ ∈M\ m{ }.
(17) Generate a new configuration f′ by randomly selecting another feasible device for m
(18) if the target device is the MD then
(19) xm⟵1, and ym,n⟵0, ∀n ∈N
(20) Randomly pick another feasible ψMD′ from Ψ
(21) else if the target device is a MEC server n′ then
(22) xm⟵0, ym,n′⟵1, and ym,n⟵0, ∀n ∈N\ n′􏼈 􏼉

(23) end if
(24) Migrate to the new configuration f′ by the probability of pf,f′ � ((exp(−βUf′ ))/(max{exp(−βUf′ ), exp(−βUf)}))

(25) end if
(26) end procedure
(27) procedure Stage 3: Reset (m)
(28) if tm does not expire and m receives a RESETmessage then
(29) Terminate its current countdown timer
(30) Transit to STAGE 1
(31) end if
(32) end procedure

ALGORITHM 1: .e Markov approximation-based algorithm.
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where δ(f′,j′), ∀j′ � −nf
′, . . . , 0, 1, . . . , nf

′ is the probability
scale on expanded states and 􏽐

n
f′

j�−n
f′
δ(f′ ,j′) � 1. .is ex-

tended Markov chain has a unique stationary distribution
since it is irreducible and only has a finite number of states.
Denote by p(f,j), ∀j � −nf, . . . , 0, 1, . . . , nf, f ∈ F is the
stationary distribution of the states in this extended Markov
chain. According to (22) and the detailed balance equations
p(f,j)q(f,j),(f′,j′) � p(f′ ,j′)q(f′ ,j′),(f,j), we have:

p(f,0)

δ(f,0) exp −βUf􏼐 􏼑
�

p f′,j′( )

δ f′ ,j′( ) exp −β Uf′ + j′/nf′􏼐 􏼑Θf′􏼐 􏼑􏼐 􏼑

� constant,
(23)

where (f, 0) refers to state f with no error.
Using 􏽐f∈F􏽐

nf

j�−nf
p(f,j) � 1, it follows that

p(f,j) �
δ(f,j) exp −β Uf + j/nf􏼐 􏼑Θf􏼐 􏼑􏼐 􏼑

􏽐f′∈F􏽐
n

f′
j′�−n

f′
δ f′,j′( ) exp −β Uf′ + j′/nf′􏼐 􏼑Θf′􏼐 􏼑􏼐 􏼑

.

(24)

Denote by φf � 􏽐
nf

j�−nf
δ(f,j) exp(β((jΘf)/nf)) �

􏽐
nf

j�−nf
δ(f,j) exp(−β((jΘf)/nf)). Using (24), we finally have

pf � 􏽘

nf

j�−nf

p(f,j) �
􏽐

nf

j�−nf
δ(f,j) exp −β j/nf􏼐 􏼑Θf􏼐 􏼑􏼔 􏼕exp −βUf􏼐 􏼑

􏽐f′∈F 􏽐
n

f′
f′�−n

f′
δ f′ ,j′( ) exp −β j′/nf′􏼐 􏼑Θf′􏼐 􏼑􏼢 􏼣 exp −βUf′􏼐 􏼑

,

�
φf exp −βUf􏼐 􏼑

􏽐f′∈Fφf′ exp −βUf′􏼐 􏼑
.

(25)

□
Proof (b). First, we prove the bounds on optimality gap for
the original Markov chain. Let fmin ∈ argminf∈FUf, and by
the Dirac distribution, we have

􏽥pf �
1, if f � fmin,

0, otherwise.
􏼨 (26)

Since p∗f in (16) is the optimal distribution for problem
P2, we have

􏽘
f∈F

p
∗
fUf +

1
β

􏽘
f∈F

p
∗
f log p

∗
f ≤ 􏽘

f∈F

􏽥pfUf

+
1
β

􏽘
f∈F

􏽥pf log 􏽥pf � Umin.

(27)

With Jensen’s inequality, we can obtain

􏽘
f∈F

p
∗
f log p

∗
f � − 􏽘

f∈F
p
∗
f log

1
p∗f
≥−log 􏽘

f∈F
p
∗
f

1
p∗f

⎛⎝ ⎞⎠

� −log|F|.

(28)

Combining (27) and (28) yields

Uavg � 􏽘
f∈F

p
∗
fUf ≥ 􏽘

f∈F
p
∗
fUmin � Umin ≥Uavg

+
1
β

􏽘
f∈F

p
∗
f log p

∗
f ≥Uavg −

1
β
log|F|.

(29)

.us,

0≤Uavg −Umin ≤
1
β
log|F|. (30)

Next, we prove the bounds on optimality gap for the
perturbed Markov chain. By part (a), probability distribu-
tion p can be regarded as the optimal solution to problem P1
by replacing the utility function Uf by Uf′ � Uf −
(logφf/β). From (20), we have

􏽘

f′∈F

pf′Uf′ − min
f′∈F

Uf′ ≤
1
β
log|F|. (31)

Plugging the values of Uf′ into (31), we obtain

􏽘
f∈F

pf Uf −
logφf

β
􏼠 􏼡− min

f∈F
Uf −

logφf

β
􏼠 􏼡≤

1
β
log|F|.

(32)

According to the definition of φf, it is easy to know that

exp −βΘf􏼐 􏼑≤φf ≤ exp βΘf􏼐 􏼑, ∀f ∈ F. (33)

.erefore,

−Θf ≤−
logφf

β
≤Θf. (34)

Combining (32) and (34) yields
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Umin � min
f∈F

Uf ≥ min
f∈F

Uf −
logφf

β
􏼠 􏼡

≥ 􏽘
f∈F

pf Uf −
logφf

β
􏼠 􏼡−

1
β
log|F|≥ 􏽘

f∈F
pfUf

−Θf −
1
β
log|F|.

(35)

For Uavg, we have

Uavg � 􏽘
f∈F

pfUf ≥ 􏽘
f∈F

pfUmin � Umin ≥Uavg −Θf

−
1
β
log|F|.

(36)

.us,

0≤Uavg −Umin ≤
1
β
log|F| + Θf ≤

1
β
log|F| + Θmax. (37)

In general, given |M| computation tasks, |N| MEC
servers, and the MD’s local CPU with |Ψ| frequency levels,
the total number of available configurations is bounded by

|F|≤ |Ψ|(|N| + 1)
|M|

. (38)

Finally, by plugging (38) into (30) and (37), we prove
part (b) of .eorem 2. □

5. Simulation Results and Analysis

5.1. Simulation Setup. In this section, we evaluate the per-
formance of our Markov approximation-based algorithm
(denoted by MA) by simulations based on parameters from

references [5, 23, 24]. Table 1 lists the default values for
simulation parameters in our experiments, if not otherwise
specified.

In order to evaluate the MA algorithm performance, we
compare it with the following three baseline approaches:

(1) Exhaustive Search (ES): the optimal solution is found
by enumerating all possible configurations, which
leads to high computation complexity and only
feasible for small-sized problems.

(2) Random Assignment (RA): the solutions are ob-
tained by randomly assigning computation tasks and
setting CPU frequency.

(3) Local Processing (LP): all computation tasks are
processed by the CPU of MD, and the frequency is
optimal to the assignment.

To eliminate the influence of randomness, the experi-
ments of MA, RA, and LP are independently carried out
multiple times for each given setting. For clear comparison,
we choose to show either the average of results or the range
of results in the figures. Similar to [7], the convergence time
of MA is defined as the time at which the difference between
two consecutive values does not exceed 0.5%.

5.2. Performance Evaluation

5.2.1. Convergence of the MA Algorithm. At first, we ex-
amine the convergence of MA under different settings.
Figure 1 shows the convergence of our MA approach in
a low-load scenario with the number of tasks |M| � 10. .e
results show that MA converges quickly to near optimal after
50 iterations, independent of problem size..e computation
complexity is far less than that of enumerating all 7 × 510
combinatorial possibilities in the ES approach. We further
investigate the performance of MA under different ratios of

Table 1: Simulation parameters.

Parameter Definition Default value
|M| Total number of computation tasks 100
|N| Total number of MEC servers 4
am Required number of CPU cycles for processing taskm 330 × bm cycles
bm Size of the input data of task m 0.5MB
cm Size of the output data of task m 0.2 × bm

θ Power parameter in CPU energy consumption model 3
(Υ1,Υ2) Power parameter in CPU energy consumption model (1.25 × 10−26, 0)

[ψmin,ψmax] CPU frequency range of the MD [2.0, 8.0] × 108 cycles/sec
|Ψ| Total number of CPU DVFS levels 7
ψn Service rates provided by MEC servers 2, 2.2, 2.4, 2.6{ } × 109 cycles/sec
rULn Uplink data rate between the MD and MEC server n 10∼20Mbps

rDLn

Downlink data rate between the MD and
MEC server n 10∼20Mbps

Ptx Transmitting power of MD 1.26Watt
Prx Receiving power of MD 1.18Watt
ξT Scalar weight of tasks’ execution time 0.5
ξE Scalar weight of the MD’s energy consumption (1− ξT)

β Positive constant that controls approximation
accuracy 50

c Mean value for the countdown timer 200

8 Mobile Information Systems



ξE and ξT. .e value of ξE is chosen such that ξE � 10ω × ξT,
where ω ∈ 0, ± 0.4, ± 0.8, ± 1.2, ±{ 1.6, ± 2}. Figure 2
shows that changing these two scalar weights has little
impact on the convergence of MA and confirms the exis-
tence of approximation gap in (14).

As the problem size becomes even larger (e.g,
|M| � 100), ES will take considerable time (e.g., several
hours or even more) to search for the optimal solution from
7 × 5100 options, while MA converges after about 1100 it-
erations. In such a high-load scenario, we compare MA with
ES, as well as the best results obtained by RA and LP from
multiple independent runs. As shown in Figure 3, no matter
how many MEC servers are used (i.e, |N| � 2 or 4), MA can
gradually converge to optimal as iteration grows. It is ob-
vious that more MEC servers can provide more offloading
options and further improve the energy and latency

performance. Although the best result of RA in Figure 3
approaches the optimal utility found by ES, RA is of no
practical value because it is generally not able to guarantee
deterministic outputs. Among the four approaches, LP has
the largest utility value, indicating that MEC offloading is
essential for shortening execution time and reducing energy
consumption in such a case.

5.2.2. Impact of Link Rates. In Figure 4, we compare the
performance of algorithms with regard to different data
transmission conditions. .e link rates are controlled in
three distinct ranges, namely, low rate (0.5Mbps∼1Mbps),
medium rate (2Mbps∼10Mbps), and high rate
(20Mbps∼50Mbps). From Figure 4, the MA algorithm can
always converge, and its convergence time decreases as the
link rates increase. We can also observe from Figure 4(a) that
MA converges to the same result as that of LP, no matter
how many MEC servers are used. .at is because when the
link rates are low, almost all tasks are processed locally by the
MD’s CPU since the offloading costs on energy and latency
are much higher than those of local computation. As the link
rates increase, the offloading costs decreases because of
lower transmission duration, making it more preferable to
offload tasks to MEC servers by using our MA algorithm (as
shown in Figures 4(b) and 4(c)).

5.2.3. Impact of Parameter β. Figure 5 demonstrates the
impact of β on system utility and convergence time. .e
dashed arrows with different colors in Figure 5 indicate the
iterative time when the convergence is achieved by MA with
a given parameter β. It is shown that as β increases from 4 to
50, and MA will eventually obtain an approximate utility
closer to the optimal value obtained by ES, but the corre-
sponding convergence time will become longer. .is allows
us to make flexible choices among various tradeoff points
between system optimization and convergence time. .ese
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observations in Figure 5 are consistent with (20) in
.eorem 2.

5.2.4. Impact of Perturbation Errors. As mentioned in
Section 4.4, in practice, we usually obtain inaccurate Uf due
to estimation errors. To verify (21) in .eorem 2, we carry
out experiments to study the impact of perturbation errors
on the performance of MA. To do this, we add different
degrees of random errors ( ± 10% ∼ ± 50%, uniformly
distributed) to rULn and rDLn for all n. In the experiments, we
let MA make all control decisions based on the perturbed
link rates but use the actual values to calculate the objective
utility. We find that MA can indeed converge to a sub-
optimal solution even when perturbation errors exist. To
characterize the optimality gap, we choose the optimal result
obtained by ES without perturbation errors as the baseline

and use this baseline to examine the worst-case (i.e., max-
imum) utility achieved byMA inmultiple independent runs.
Figure 6 shows the difference ratios of utilities under dif-
ferent error rates. From the figure, we find that as the error
rate varies from 10% to 50%, the optimal gap keeps in-
creasing from 2.15% to 33.0%. .ese results corroborate
.eorem 2 that the further the estimations are from the true
values, the poorer the performance MA achieves. However,
when the error rate is smaller than some threshold value
(e.g., 20%), the optimal gap is very small.

5.2.5. Tradeoff between Latency and Energy. In Figure 7, we
study the tradeoff between task execution time and mobile
energy consumption in the MA algorithm. As we did in the
case of Figure 2, totally 11 different combinations of ξE and
ξT are chosen for comparison in Figure 7. For each curve in
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Figure 4: Algorithm comparison under different link rates. (a) 0.5 Mbps∼1 Mbps. (b) 2 Mbps∼10 Mbps. (c) 20 Mbps∼50 Mbps.
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Figure 7, the markers are laid out from left to right in the
order of ω. Correspondingly, the left-most marker corre-
sponds to the condition ω � −2, and the right-most marker
corresponds to the condition ω � 2. From this figure, it is
feasible to tune the two scalar weights for achieving a de-
sirable tradeoff between latency and energy. However, we
can notice that when ω grows greater than some threshold
(e.g., ω> 0 when |N| � 2), the decreasing trend of energy
consumption becomes smooth while execution latency
keeps increasing..erefore, the values of ξE and ξT should be
carefully chosen to achieve a satisfactory energy-latency
tradeoff. On the other hand, increasing |N| leads to sig-
nificant reductions in both latency and energy, as the curve
shifts down to the bottom-left corner of the plot. .is ob-
servation confirms again that it is beneficial to provide more
than one MEC server to the MD for task offloading. Nev-
ertheless, the performance improvement gradually di-
minishes when |N| becomes larger.

6. Conclusion

.is paper addresses the computation offloading issue in
a multiserver mobile edge computing scenario, where
a MD can offload its computation tasks to multiple MEC
servers. We formulate this problem as the joint optimi-
zation of task assignment and frequency scaling, aimed at
minimizing the tradeoff between the MD’s energy con-
sumption and total tasks’ execution time. In order to
solve this NP-hard problem, a Markov approximation-
based algorithm is devised to find a near-optimal solu-
tion, where the result has only a small and bounded gap
with the optimal one. .rough simulation experiments
with many practical concerns, we verify that our algo-
rithm can converge to near-optimal performance and
ensure desirable robustness and scalability. Furthermore,
this algorithm significantly outperforms other bench-
mark algorithms such as exhaustive search and local
processing.

For the future work, we are going to examine our
Markov approximation-based approach with multiple MDs
to obtain more general conclusions. Further, we shall extend
our approach to an online case, where the problem can be
solved with dynamic arrival and leave of MDs. It is also
worthwhile to evaluate the work in a real test-bed of mobile
edge computing.
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