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Abstract: Mobile edge computing (MEC) is a new promising technique to provide cloud-computing capabilities at
the edge of cellular networks in close proximity to mobile users. In this paper, we consider joint optimization of the
communication and computation resources in a multiuser, multiserver MEC system. The objective of this optimization
problem is to minimize the total energy consumption of mobile devices under the time-sharing constraint. Given the
fact that no coordination is involved between mobile devices, we propose a light-weight and decentralized algorithm
based on the alternating direction method of multipliers (ADMM) framework. Experimental results demonstrate that
the proposed algorithm performs well in terms of convergence and outperforms the conventional centralized approach.
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1. Introduction
With the prevalence of mobile computing, more and more new mobile applications, e.g., augmented reality,
interactive gaming, and video streaming, are emerging and posing stringent requirements for intensive compu-
tation and tight latency [1]. However, current mobile devices generally possess limited local resources, which
are insufficient to support sophisticated applications. To address this issue, mobile edge computing (MEC)
was recently proposed as a promising paradigm that extends cloud computing capabilities to the edge of radio
access networks [2, 3]. This paradigm enables telecom operators to deploy resource-rich base station clouds so
that nearby mobile devices can access pervasive and agile computation services whenever needed. Compared to
mobile cloud computing, MEC has more advantages in terms of communication latency, energy consumption,
and back-haul load [4].

Since both computation latency and energy consumption are critical for resource-constrained mobile
devices, the design of computation offloading schemes has attracted considerable attention for MEC systems.
On one hand, some earlier studies concentrate on task offloading from a single user to a dedicated MEC server.
Wang et al. [5] jointly optimized the computational speed, transmit power, and offloading ratio for mobile
devices with two system design objectives: energy consumption minimization and execution delay minimization.
A Markov decision process approach was proposed in [6] to handle the power-constrained delay minimization
problem in MEC. You et al. [7] proposed a framework in which a MD can not only process computation tasks at
a local CPU or offload them to the MEC server but can also harvest energy from the base station by microwave
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power transfer (MPT) technology. In [8], a dynamic computation offloading algorithm based on Lyapunov
optimization was introduced to minimize the execution cost in a green MEC system with energy-harvesting
mobile devices. On the other hand, recent studies mainly focus on task offloading and resource allocation in
multiuser MEC systems. You et al. [2] designed centralized resource allocation to achieve minimum weighted
sum mobile energy consumption in the multiuser scenario. A task offloading scheduling algorithm was proposed
in [9], which considers minimization of mobile energy consumption under the constraints of resource capacity
and computation latency. To sum up, most existing studies only take scenarios with a single MEC server into
consideration. However, with the proliferation of small-cell base stations [4], mobile devices will be enabled to
choose the most eligible edge server from those nearby to optimally offload computation tasks [10].

The goal of this paper is to propose a joint optimization of communication and computation resources for
task offloading in a multiuser, multiserver MEC scenario. The main contributions are summarized as follows:
1- An optimization problem is formulated to minimize the total mobile energy consumption under the time-
sharing constraint. 2- For reasons of performance, scalability, and robustness, we develop a new algorithm to
solve this problem in a distributed fashion based on the alternating direction method of multipliers (ADMM).
The proposed algorithm naturally decomposes computations onto the mobile devices and the MEC servers,
making them autonomously collaborate to iteratively reach the optimum. 3- We conduct simulations to show
that our algorithm can converge fast in dozens of iterations to a near optimum and can achieve significant
energy savings for mobile devices.

The rest of this paper is organized as follows. Section 2 presents the system model and formulation of
the optimization problem. Then the proposed ADMM-based algorithm is introduced in Section 3. Section 4
demonstrates the simulation results. Finally, we conclude the paper in Section 5.

2. System model and problem formulation

2.1. System model

We consider a MEC system consisting of M mobile devices (MDs) and N MEC servers in the same geographic
area. Time is divided into equal-length slots. Each slot lasts for a duration of T seconds, where T is chosen
to satisfy the latency requirement of mobile users. Considering an arbitrary time slot, the mth MD is required
to compute Rm bit input data within this slot. Similar to [5–7], in this paper we assume that the considered
computation tasks are dividable and offloadable. The MD m can choose to execute its computation task either
locally by its own CPU or remotely at a MEC server.

For the local computation, we assume that the mobile CPU is operating at fixed frequency for data
computation at each MD and may vary over different MDs. Following the model in [2], we denote Cm as the
number of required CPU cycles for processing one bit of input data at MD m , and P cpu

m as the energy cost
per CPU cycle for local computation at MD m . Then, if bm bits of input data are computed locally, the
computational energy consumption of MD m can be given by Ecpu

m = bmCmP cpu
m .

For the MEC offloading, we assume that a single MEC server can serve for multiple nearby MDs, each of
which will be allocated a fraction of the time slot for data transmission. In any time slot, a MD can determine
whether or not to offload some of its computation workloads to any one of the MEC servers. The fraction of time
slot allocated by MEC server n to MD m for computation offloading is denoted as tm,n , where tm,n ∈ [0, T ] .
The time duration and energy consumption for MEC computing and result downloading are assumed to be
negligible in resource allocation [2, 8]. For MD m and MEC server n , we denote by rm,n the achievable rate
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(in bits/s), which can be given as:

rm,n = B log2

(
1 +

P tx
m,nh

2
m,n

N0

)
, (1)

where B is the wireless bandwidth, P tx
m,n is the transmission power of m offloading computation to n , hm,n is

the channel gain from m to n , and N0 is the variance of white Gaussian noise. Accordingly, the total amount
of offloaded data for MD m is given as

∑N
n=1 rm,ntm,n , and the energy consumption for computation offloading

at MD m can be given by Eoff
m =

∑N
n=1 P

tx
m,ntm,n .

2.2. Problem formulation
We are now in a position to formally formulate the energy-efficient resource allocation problem as an optimization
that minimizes the overall energy consumption of MDs, as follows:

min
{t}

M∑
m=1

[
N∑

n=1

P tx
m,ntm,n + (Rm −

N∑
n=1

rm,ntm,n)CmP cpu
m

]
(2)

s.t.
M∑

m=1

tm,n ≤ T, ∀n, (3)

N∑
n=1

rm,ntm,n ≤ Rm, ∀m, (4)

tm,n

T
≤ xm,n, ∀m,n, (5)

N∑
n=1

xm,n = 1, ∀m, (6)

var. tm,n ∈ [0, T ], ∀m,n, (7)

xm,n ∈ {0, 1}, ∀m,n. (8)

Here, the objective is to minimize the total energy consumption of all MDs in the system for an arbitrary time
slot, and xm,n is defined to indicate whether assigning the tasks of MD m to the MEC n . The constraint of
Eq. (3) ensures that the total allocated time duration to MDs by each MEC server is no more than T . The
constraint of Eq. (4) ensures that each MD can be offloaded at most all amounts of input data to any MEC
server. Constraints of Eqs. (5) and (6) jointly ensure that each MD can only be associated with and served by
one MEC server for computation offloading, because offloading data to different MEC servers during the same
time slot will incur extra overheads for the MD [2]. At the beginning of each time slot, this problem should be
solved so as to optimally allocate resources to all MDs for processing their tasks in this slot.

The optimization problem of Eq. (2) is a mixed-integer convex programming problem [11], which is
NP-hard in general. Such a problem is usually transformed and solved by convex relaxation [12], i.e. removing
the integer constraint of Eq. (8) or replacing it with xm,n ∈ [0, 1] , ∀m,n . Then the transformed problem can
be solved in a centralized way by some conventional solvers, and the exact solution can further be obtained
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by various global or local methods [12]. However, the number of iterations the solver requires in conventional
methods is directly related to the size of problem. In typical use scenarios, the number of MEC servers can
be O(10) − O(102) , and the number of MDs can be O(102) − O(103) or even more [4]. Therefore, it is very
inefficient to solve such a large-scale problem in a centralized way. Furthermore, a central controller has to be
deployed to collect indispensable private information from all MDs and MEC servers, solve the optimization
problem accordingly, and transfer the allocation results back to each server and each MD. Such operations will
bring about excessive computation latency and significant communication burdens for the whole system. These
observations motivate us to develop a scalable and robust decentralized algorithm that is easily amenable to
practical implementations.

3. Algorithm design

Our algorithm is based on ADMM [13], a simple yet very effective method that solves large-scale convex
optimization problems without suffering from the aforementioned drawbacks. However, our problem in Eq.
(2) cannot be directly solved by ADMM. The reasons for this are twofold. First, the Boolean variables
{xm,n} comprise a nonconvex set, rather than the nonempty polyhedral set required by the ADMM framework.
Secondly, the constraints of Eqs. (3) and (4) couple all variables together, while in ADMM problems the
constraints should be separable for each set of variables.

According to [12], the nonconvex constraints can be relaxed by removing the constraints of Eqs. (5), (6),
and (8). Note that we will add them in the update procedure of tm,n so as to ensure that the final solutions
satisfy these constraints [12]. For the second challenge, the coupling restrains the problem of Eq. (2) from being
solved in a distributed manner. To this end, we introduce a new set of auxiliary variables sm,n = tm,n , ∀m,n ,
and reformulate the problem (2) as follows:

min
{t,s}

N∑
n=1

M∑
m=1

P tx
m,nsm,n +

M∑
m=1

(Rm −
N∑

n=1

rm,ntm,n)CmP cpu
m (9)

s.t.
M∑

m=1

sm,n ≤ T, ∀n, (10)

(4),

var. (7),

sm,n = tm,n, ∀m,n. (11)

According to the ADMM framework, we can formulate the augmented Lagrangian of Eq. (9) as:

Lρ(t, s, y) =

N∑
n=1

M∑
m=1

P tx
m,nsm,n +

M∑
m=1

(Rm −
N∑

n=1

rm,ntm,n)CmP cpu
m

+

M∑
m=1

N∑
n=1

ym,n(tm,n − sm,n) +

M∑
m=1

N∑
n=1

ρ

2
(tm,n − sm,n)

2,

(12)

where ρ > 0 is the penalty parameter [13], and ym,n is the dual variable for the equality constraint in Eq. (11).
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Then, based on ADMM, Eq. (12) can be solved by updating t , s , and y sequentially [13, Chapter 3].
Specifically, for the (k + 1)th iteration:

1. t-update Each MD m solves the following subproblem for tk+1
m,n :

min
{tm}

N∑
n=1

[
ρ

2
t2m,n + (ykm,n − ρskm,n − rm,nCmP cpu

m )tm,n] (13)

s.t. (4), (5), (6),

var. (8).

The subproblem in Eq. (13) belongs to mixed-integer nonlinear programming and is expected to be
NP-hard. Fortunately, since MD m can only choose one of the MEC servers (e.g., server i ∈ {1, ..., N}) to
offload its task, we know that in the optimal solution tOPT

m,i > 0 while tOPT
m,j = 0 , ∀j ∈ {1, ..., N} and j ̸= i .

Then Eq. (13) can be transformed into the following problem:

min
{n}

min
tm,n

h(tm,n) =
ρ

2
t2m,n + (ykm,n − ρskm,n − rm,nCmP cpu

m )tm,n (14)

s.t. rm,ntm,n ≤ Rm,

var. (8).

To solve Eq. (14), MD m first finds the optimal solution t∗m,n that minimizes h(tm,n) , for each

n ∈ {1, ..., N} . Then, from the resulting set of t∗m,n , tOPT
m,i is chosen as the one that makes h(tOPT

m,i ) the
minimal element in the set of h(t∗m,n) . In this procedure, t∗m,n can be calculated as follows:

t∗m,n =


am,n,

rm,nCmP cpu
m +ρskm,n−yk

m,n

ρ > am,n,

0,
rm,nCmP cpu

m +ρskm,n−yk
m,n

ρ < 0,
rm,nCmP cpu

m +ρskm,n−yk
m,n

ρ , Otherwise,

(15)

where am,n = min{ Rm

rm,n
, T} .

2. s-update Each MEC server n solves the following subproblem for sk+1
m,n :

min
{sn}

M∑
m=1

[
ρ

2
s2m,n + (P tx

m,n − ρtk+1
m,n − ykm,n)sm,n] (16)

s.t. (10),

var. sm,n ∈ [0, T ], ∀m,n. (17)

This subproblem is a small-scale quadratic problem that has only M variables and can be easily solved
with the standard convex optimization technique [14].

3. y-update With the optimal tk+1
m,n and sk+1

m,n , the final step is to update the dual variables:

yk+1
m,n = ykm,n + ρ(tk+1

m,n − sk+1
m,n). (18)
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The above three update procedures are conducted alternatively until convergence. As depicted in
Algorithm 1, the distributed nature of this algorithm allows for a very efficient parallel implementation in
the multiuser multiserver MEC system. Step 2 involves solving the subproblem of Eq. (14) with N variables,
which can be implemented in parallel at M MDs. Steps 3 and 4 involve solving the subproblems of Eq. (16)
and (18) with M variables, which can also be implemented in parallel at N MEC servers.

Algorithm 1 Distributed solution to Eq. (2) using ADMM
1: Each MEC server n initializes s0m,n = 0 , y0m,n = 0 , ∀m .
2: Given skm = [skm,1, s

k
m,2, ...] and ykm = [ykm,1, y

k
m,2, ...] , each MD m solves subproblem (14) for the optimal

solution tk+1
m,n and sends tk+1

m,n to the corresponding MEC server n .
3: Given tk+1

n = [tk+1
1,n , tk+1

2,n , ...] , each MEC sever n solves subproblem (16) for the optimal solution sk+1
m,n with

local information ykn = [yk1,n, y
k
2,n, ...] .

4: Each MEC server n updates the dual variables yk+1
n = [yk+1

1,n , yk+1
2,n , ...] as in Eq. (18). Then n sends sk+1

m,n

and the dual variable yk+1
m,n to the corresponding MD m .

5: Return to Step 2 until convergence.

This new algorithm will inevitably bring about additional energy consumption in computation and
communication in the solving process. However, such costs are often very small and negligible [15–17], as
compared to those for data processing.

4. Numerical results
In this section, we evaluate the proposed distributed MEC offloading algorithm by conducting MATLAB-based
simulations. The parameters are set as follows unless specified otherwise. There are M = 100 mobile devices
and N = 20 MEC servers in the system. The time slot is T = 2 s. For the wireless channel, we choose
B = 1 MHz, N0 = 10−9 , and hm,n is modeled as independent Rayleigh fading with average value as 1 [2]. The
transmission power is P tx

m,n = 0.01 W [18]. For the computation task, both the data size and the required energy
consumption per bit follow the uniform distribution with Rm ∈ [0, 100] Mb and CmP cpu

m ∈ [516.5, 1116.5] W/b
[5]. The penalty parameter ρ is set to 0.5. Furthermore, we define the primal residual as rk+1 = tk+1 − sk+1

and then choose ∥rk∥2 ≤ 2 × 10−4 as the convergence criterion [13]. For comparison, we use a well known
solver, “lp_solve”, to solve the problem of Eq. (2) in the conventional centralized way [19].

To understand the algorithm performance on a microscopic level, we plot a representative execution
result in Figure 1 and Figure 2. The total energy consumption achieved by our algorithm is much higher than
the optimal value at the beginning of iterations, since the constraints in Eq. (11) cannot always be satisfied.
By enforcing the regularization terms for coupling constraints, the proposed algorithm would gradually satisfy
these constraints in a few iterations. Eventually, it converges to modest accuracy after 60 iterations, with a
gap of only 1.46‰. After that, we can observe that the algorithm still attempts to converge to high accuracy,
although very slowly. These observations indicate that our ADMM-based algorithm can produce acceptable
results of practical use in a few dozen iterations.

Figure 3 demonstrates the effects of varying parameter ρ on algorithm convergence. We can observe
that the results with different ρ finally converge to almost the same optimal value with only a slight gap.
However, the choice of ρ affects the convergence rate of our algorithm, i.e. setting a smaller ρ results in a faster
convergence, especially before the 100th iteration.
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Figure 1. Total energy consumption convergence versus
the number of iterations.

Figure 2. Primal residual versus the number of iterations.

Figure 4 plots the CDF of the number of iterations the two algorithms take to achieve convergence for 15
runs. It is clear that the proposed algorithm converges much faster than the centralized method. Our algorithm
takes at most 93 iterations to converge, while the centralized method takes at least 519 iterations. For 80% of
the time our algorithm converges within 83 iterations, while the centralized method takes 653 iterations. These
results show the fast convergence of our algorithm compared to conventional methods.
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Figure 3. The effects of ρ on convergence of ADMM
algorithm.

Figure 4. CDF of the number of iterations to achieve
convergence.

Then we investigate the performance of our algorithm in different system parameter conditions. Figure
5 shows that the higher the wireless bandwidth is, the smaller the total energy consumption of all MDs is. This
corroborates Eqs. (1) and (2) as MDs are more capable to offload their tasks to MEC servers with higher link
rates. Figure 6 illustrates the impacts of varying the transmission power of a MD. As the transmission power
increases, the energy consumption on wireless transmission will be increased while the energy consumption in
local computation will be reduced. According to Figure 6, using a higher transmission power is more favorable
for reducing the total energy consumption of MDs. Both Figures 5 and 6 show that even when some key system
parameters are changed, our algorithm can still converge in a few dozen iterations.
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Figure 5. Impacts of wireless bandwidth on energy con-
sumption and algorithm convergence.

Figure 6. Impacts of transmission power on energy con-
sumption and algorithm convergence.

Finally, we vary the number of MEC servers N to study its impact on algorithm performance. The
results are shown in Figure 7. As N increases, the MDs will have more options and better choices to offload
their tasks, resulting in significant reductions in energy consumption. For example, when N = 40 , the total
energy consumption is reduced by 21.5% as compared to the case without task offloading (i.e. when N = 0).
However, the growth in the number of variables slows down the convergence speed of the proposed algorithm
according to our definition of the convergence criterion in Section 4. For instance, the algorithm converges after
about 16 iterations when N = 1 , about 39 iterations when N = 10 , and about 115 iterations when N = 40 .
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Figure 7. Impacts of the number of MEC servers on energy consumption and algorithm convergence.

5. Conclusion
In this paper, we investigate energy-efficient resource allocation with the consideration on the latency require-
ment for mobile edge computing. We formulate the problem as a mixed-integer convex optimization, which
minimizes the total energy consumption of all mobile devices in the system. We designed an efficient distributed
algorithm based on the ADMM framework, which can decompose the original problem into a number of small-
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scale subproblems that can be effectively and efficiently solved. Simulation experiments are conducted to verify
the advantages of the proposed algorithm in many aspects.
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