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Abstract

It has been realized that network performance is one of 
the most important metrics for evaluating the performance 
of applications deployed in cloud data centers. Numerous 
bandwidth allocation schemes have been proposed to 
maximize the utilization of data center networks as well as 
to improve the performance of applications. However, those 
works only focus on allocating link bandwidth shared among 
elastic applications; the path delay experienced by inelastic 
traffic such as delay-sensitive traffic has been neglected. 
In this paper, we investigate the problem of maximizing 
application utility in data center networks considering both 
the throughput and the delay influence. The utility of an 
application is the benefit brought by bandwidth increases 
minus the expenditure charged by congestion delay growth. 
We then formulate the utility-driven bandwidth allocation 
problem as a convex optimization with the objective of 
maximizing overall utility across all applications. Standard 
interior point algorithm is applied to derive the optimal 
solution. We show the outstanding performance of our 
solution through extensive simulations with several realistic 
data center network (DCN) topologies.

Keywords: Cloud computing, Utility-driven, Bandwidth 
allocation, Data center network.

1 Introduction

With the proliferation of cloud computing, many 
enterprises have adopted data centers as the standard 
computing platform to run their applications. For example, 
on-demand streaming provider Netflix [1] has moved 
their services to Amazon EC2 [2] to take the advantage of 
computation and storage resources which are available on 
demand. Data centers provide many mechanisms [3-5] to 
schedule the computation, memory and disk resources to 
achieve cost efficiencies and on-demand scaling. However, 
existing schemes fall short to provide predictable network 
performance of applications. 

 Measurement and analysis [6-7] indicate that network 
performance has become a key concern for tenants 
evaluating the performance of their applications. The 
authors of Ref. [8] conducted several experiments in both 
public data centers and production data centers to evaluate 

the network performance for tenants in shared environment. 
They showed that network performance varies significantly 
among different applications, because these applications are 
coexisting in the same data center and they are untrusted 
by each other. The competition for the use of network 
resources makes the utilization of data center networks very 
poor; in the meantime, the network interference between 
tenants makes the network performance of applications 
unpredictable. Therefore, it is critical to provide strong 
network performance isolation in data centers.

 Many researchers [8-13] have appealed to bandwidth 
allocation for providing predictable network performance 
and network isolation among tenants. On the one hand, 
they provide minimum bandwidth guarantees [8, 12] 
by reserving fixed bandwidth for each application. The 
drawback is, even if the reserved bandwidth is not fully 
used by one application, it could not be used by other 
applications any more. On the other hand, they offer fair 
bandwidth allocation [9-11, 13] by allocating bandwidth 
according to the weight of each tenants, applications, or 
virtual machines. Those weight-based methods do not 
have minimum bandwidth guarantees if there are too many 
applications coexisting in the same data center. What’s 
more, all these mechanisms only focus on link bandwidth. 
Network latency has rarely been considered as the primary 
concern of network performance. 

In this paper, we argue that the network performance 
of applications is not only influenced by the throughput 
obtained from bandwidth allocation, but also influenced by 
the network latency acquired from the path selection. For 
example, the throughput-oriented applications, such as file 
transfer and map-reduce like applications, they prefer to  
request for large bandwidth to reduce the completion time 
of the tasks. But the latency-sensitive applications, such as 
multiple tier web services and financial transactions, they 
prefer to use a shorter path. As in-between applications 
such as video on-demand, they need both high throughput 
and low latency. Therefore, we are motivated to propose a 
utility-driven bandwidth allocation scheme in data center 
networks. We build utility function for each application 
based on their sensitivities, and the objective of our 
bandwidth allocation is to maximize the overall utility 
among all applications.

The primary contributions of this paper are summarized 
as follows:
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number of applications compete for one congestion link. 
In this situation, even the application with the largest 
weight cannot acquire a minimum bandwidth guarantee. 
Terry et al. bridged this gap in an extended version [10] 
of NetShare [11] via introducing an admission control 
strategy. Nevertheless, we argue that the weight-based 
methods cannot meet the network latency requirements of 
tenants. In [9], the authors proposed a network resources 
sharing scheme that allocate bandwidth in proportion to the 
payments of tenants, the nature of the sharing is still based 
on weight, where the payment is equivalent to weight.

Some  r e sea r che r s  have  begun  to  gua ran t ee 
heterogeneous or uncertain bandwidth demands in 
multitenant data center networks. Li et al. [15] proposed 
a heterogeneous bandwidth demand guarantee method, 
where the tenant can specify a diverse set of bandwidth 
demands for their virtual machines. In [16], the authors 
proposed a novel virtual cluster abstraction, where the 
bandwidth requirements between virtual machines can be 
stochastic. In order to capture the time-varying bandwidth 
requirements of cloud applications, temporally-interleaved 
virtual clusters TIVC [17] was introduced to reduce over-
reservation of network bandwidth in fixed-bandwidth 
abstractions. Kraken [18] allows tenants to dynamically 
request and update minimum network bandwidth demands, 
it can be achieved through an online resource reservation 
scheme. 

However, none of the bandwidth guarantee mechanisms 
above has considered network latency as a primary metric 
for evaluating the performance of applications. The 
authors of HULL [19] considers the latency in the network 
switching nodes, they cap the amount of bandwidth 
available on a link in exchange for significant reduction 
in latency. Parley [20] provides service-centric minimum 
bandwidth guarantee, which can help services maintain low 
tail latency. In [21], the authors explored several choices for 
a cloud provider to infer network latency demands of the 
tenants.

To the best of our knowledge, this paper is one of the 
first researches to consider both the bandwidth and the 
latency features to evaluate the network performance of 
applications running in data center networks. We allocate 
bandwidth to each application on multiple paths as long as 
there is available bandwidth on that path. Therefore, our 
scheme has higher bandwidth utilization than approaches 
proposed in [8, 12]. We construct utility functions to reflect 
the throughput-sensitive and delay-sensitive features of 
different applications; hence we believe that bandwidth 
allocation according to the characteristics of applications 
can get more fine-grained service differentiation than [9-11, 
13].

In [22], we proposed a similar model to allocate 

 y We propose a novel bandwidth allocation solution for the 
network-sharing problem in data center networks. The 
gist of our solution is, we penalize the traffic use paths 
with high delay while encouraging traffic to use less 
popular shortest path to avoid congestion.
 y We formulate the bandwidth allocation problem as a 
utility maximization problem. The utility of an application 
is the benefit brought by bandwidth increases minus the 
expenditure charged by congestion delay growth. The 
overall utility in a data center network is defined as the 
linear weighted sum of all applications.
 y We prove that the formulation of our utility-driven 
bandwidth allocation problem is a convex optimization 
problem. Standard interior point algorithm is used to 
derive the optimal solution. Simulation results show that 
our solution outperforms current bandwidth allocation 
mechanisms. 

2 Related Work

Most of the previous researches focus on providing 
bandwidth allocation mechanism to meet the network 
bandwidth demands of tenants. These mechanisms mainly 
include bandwidth reservation and weighted bandwidth 
allocation. Until recently, there has been few works 
considering network latency demands of tenants.

SecondNet [12] offers three priority bandwidth 
guarantee, including type 0, type 1 and best effort. Type 
0 provides fixed reserved bandwidth between virtual 
machines, which is analogous to Integrated Service [14]. 
Type 1 provides only last and/or first hop guarantee, 
and best effort type does not have any guarantee. The 
authors of Oktopus [8] proposed two class virtual network 
abstractions to meet different application requirements. 
They distinguished data-intensive applications from others 
so that “Virtual Cluster” and “Virtual Oversubscribed 
Cluster” are abstracted respectively. Both of the two-class 
abstraction can guarantee fixed switch-to-VM bandwidth. 
The only difference is that the latter is interconnected with 
an oversubscription factor. However, even for the highest 
priority application, i.e., priority 1 in [12] and “Virtual 
Cluster” in [8], the bandwidth each virtual machine 
obtained is bounded by a fixed value. Applications cannot 
benefit from spare network resource in data centers. What’s 
more, if the fixed bandwidth were oversubscribed, tenants 
would lose money that they invested for applications and 
spare network resources are wasted in the meanwhile.

 NetShare [11] and Seawall [13] allocate bandwidth 
according to the weights of applications in centralized 
and distributed ways respectively. The pure weight-based 
approaches cannot guarantee predictable performance 
under the worst cases. Suppose a scene where a great 
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bandwidth in data center networks. However, the 
mathematical formulation in that paper is hard to resolve. 
And the simulation in that work is weak. We revised and 
extended that work to give an elaborate utility-based 
bandwidth allocation scheme in detail.

3 Overview

In data center networks, central controller is commonly 
adopted to allocate IP addresses to virtual machines as well 
as to conduct some other operations. Taking advantage 
of this controller, we design the bandwidth allocation 
mechanism in a centralized way and then we briefly 
describe the architecture of our scheme in this section.

For convenience, we take one of the well-known DCN 
topology fat-tree [23] as an example to present our scheme. 
It should be noted that the deployment and implementation 
of our scheme is independent of the DCN topologies. As 
shown in Figure 1, fat-tree is split into three layers, which 
are labeled edge, aggregation and core respectively. There 
are k Pods, each Pod contains two layers of k/2 switches. 
Each k-port switch in the edge layer is directly connected 
to k/2 servers. The remaining k/2 ports are connected to 
k/2 aggregation layer switches. There are (k/2)2 k-port core 
layer switches. Each core switch has one port connected 
to one of the aggregation layer switches in each Pod. In 
general, a fat-tree that is built with k-port switches can 
support k3/4 servers. In Figure 1, k = 4, so it can support at 
most 16 servers. 

Figure 1 Fat Tree Topology

As shown in Figure 1, the central management unit is 
the key component of our mechanism. The main function 
of central management unit is to maintain routing matrix 
and compute the bandwidth needed for allocation according 
to the requirements of applications that are input by the 
administrator of data centers. Application requirements 
should at least contain the following three parameters: 
throughout-sensitive coeffi cient, delay-sensitive coeffi cient 
and minimum bandwidth requirement. The specific 
meaning of these parameters will be introduced in the next 
section.

 In order to generate the routing matrix, we need some 

symbols to differentiate each physical links. We label all 
physical links in the topology using a similar method that 
Radhika et al. [23] used to allocate IP addresses to switches. 
In brief, starting from Pod 1, we mark the links among 
edge switches and aggregation switches with number 1 – 
k/2 (from left to right). Then the links between aggregation 
layer and core layer can be labeled in the same way. The 
remaining links in other Pods could be labeled continually. 
In Section 6, we will give an example of labeled topologies.

 In virtualized cloud data centers, each packet is 
processed by a virtual switch before the packet is sent 
out or forwarded to virtual machines. Virtual switch is 
usually implemented in the virtualization layer of physical 
servers. As a software switch, many specific functions 
can be developed according to our demands. As long as 
the bandwidth allocation results are received from central 
management unit, the virtual switch will be triggered to 
allocate bandwidth on each corresponding path. The major 
technologies that could be applied here are rate limiting 
and multi-path routing. Discussion in further detail can be 
found in Section 5. 

4 Utility-Driven Bandwidth Allocation

4.1 System Model
We model the DCN topology as a weighted undirected 

graph and denote it by G = (N, L), where N is the set of 
switches and L is the set of physical links. L is denoted by 
L = 1, 2, ..., l(l ≥ 2). The bandwidth capacity and remaining 
bandwidth capacity of links are denoted by vector C = 
(c1, c2, ..., cl)(l ≥ 2), γ = (γ1, γ2, ..., γl)(l ≥ 2) respectively. 
A tenant usually rents a group of virtual machines to run 
their applications. We use VM-VM pair [srcVM, dstVM] 
to represent the communication between virtual machines. 
Data center networks are commonly constructed with 
multi-root tree topology [23-25]. Virtual machines can 
communicate with each other using multiple paths. For 
example, in fat-tree topology, the number of paths for inter-
Pod and intra-Pod VM communication is determined by 
the number of core switches and the number of aggregation 
switches in each Pod respectively. We use pi to represent 
the number of paths that are available for VM-VM pair i. 
Then the bandwidth allocated to the ith VM-VM pair can 
be denoted by vector Xi = (Xi1, Xi2, ..., Xn)(i ≥ 2), xij denotes 
bandwidth allocated to pair i on path j. For convenience, we 
assume that all applications running in the data center use n 
VM-VM-pairs, the global bandwidth allocation vector can 
be acquired with X = (X1, X2, ..., Xn)(n ≥ 2). Accordingly, 
routing matrix can be denoted by 
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Rl,p = 

R1,1

R2,1

…

Rl,1

R1,2

R2,2

…

Rl,2

…
…
…

…

R1,p

R2,p

Rl,p

Where

p = Σ
i = 1

n

 pi

The number of rows means that there are l physical 
links in data center network. And p columns mean there 
are n VM-VM pairs each with pi redundant links. The 
value of elements in matrix can be determined by using the 
following indicative function:

Ri,j = � 1,   if link i ∈ path j
0,   if link i ∉ path j

4.2 Service Model
For fine-grained differentiated bandwidth guarantees, 

we propose an utility-based bandwidth guarantee interface 
whereby tenants can specify application performance 
requirements  according to the character is t ics  of 
applications. The interface can be denoted by using a set 
of rules of the format: [ApplicationID, srcVM, dstVM, Bmin, 
α , β ]. Wherein the interface, Bmin denotes the minimum 
bandwidth requirement of the application, α and β mean 
the throughput-sensitive and delay-sensitive coefficient of 
the application respectively. For example, [app0, vm0, vm1, 
10, α, β] specifies that communication between vm0 and 
vm1 in app0 requires at least 10 units bandwidth guarantee 
with utility coefficient [α, β].

 As Amazon Elastic Compute Cloud [3] specifies tens 
of instances for different requirement combinations of 
CPU, Memory, I/O resources. We differentiate network 
resource requirements by setting the combination of [α, β] 
for different applications. The number of combinations can 
be set according to the need of Cloud provider flexibly. For 
example, if we want to specify up to 100 instances, we can 
define α, β ∈ {x|1 ≤ x ≤ 10, x ∈ Z}, then the combination 
of [α , β ] can express bandwidth differentiation for 100 
different application types.

Based on the interface we defined above, we can 
construct utility function to show the network performance 
for different types of applications:

 Uk = Σ
u:u∈pair(k)

 Σ
v:v∈pair(u)

 Σ
w:w∈link(v)

(α k xkw – β k xkw

γw
) (1)

pair (k) denotes the set of VM-VM pairs which belong 
to application k. path (u) denotes the set of paths used by 

VM-VM pair u. And link (v) denotes the set of links used 
by path v. xkw denotes bandwidth allocated to application 
k on link w, which can be obtained using bandwidth 
allocation vector X and routing matrix R. The term 1/
γw denotes the expected congestion delay on link w from 
an M/M/1 delay function [26-28], where γw denotes the 
residual bandwidth capacity on physical link w. αk and βk 
reflect the throughput and delay sensitive characteristic of 
application k respectively. Hence the utility of application k 
is consisted of the utility that the application obtained from 
all links, paths and VM-VM pairs it uses.

The meaning behind the utility is a tradeoff between income 
brought by bandwidth increases and expenditure charged by 
congestion delay growth. For a throughout-sensitive application 
e.g., MapReduce application, the coefficient α is always set 
larger to reflect that bandwidth affects its utility obviously; for 
delay-sensitive applications e.g., user-facing Web applications, 
β is usually set larger to reflect delay affects their performance 
significantly. Specific benchmarks can be conducted to assist 
setting the values of [α, β].

To be mentioned, we provide an interface to tenants 
where the tenants can submit their network performance 
requirements by specifying Bmin, α, β. What behind the 
interface is that, in order to get higher quality of service, 
the tenant always appear for larger α and/or β which means 
a higher payment. From the perspective of cloud providers, 
it is necessary to meet the requirements of tenants who 
pay more first. In consideration of this, we can naturally 
denote the weight to each application by calculating the 
throughput-sensitive and delay-sensitive coefficient

 λ k = α 2
k + β 2

k  (2)

λ k being small implies that both coefficients are small and 
being large means that at least one coefficient is large.

In Table 1, the key notations that are used throughout 
the paper are summarized.

Table 1 Key Notations in the System and Service Model 

Symbol Description
l Number of physical links
n Number of VM-VM pairs
ci Bandwidth capacity of physical link i
γ i Residual bandwidth of physical link i 
Xi Bandwidth allocated to VM-VM pair i

Bk
min Minimum bandwidth requirement of application k
α k Throughout-sensitive coefficient of application k
β k Delay-sensitive coefficient of application k
Uk Utility function of application k
λ k Generalized weight of application k
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4.3 Formulation
The objective of our utility-driven bandwidth allocation 

problem is to find an optimal solution that can maximize the 
weighted sum of overall network utility of all applications. 
Hence the problem can be formulated as a mathematical 
optimization problem. The mathematical model is shown as 
following:

 MaximizeΣ
k = 1

K

λ kUk  (3)

 Subject to Rl,p × X 
T
1,p  (c1, c2, ..., cl) (4)

 Σ
j = 1

pi

xij ≥ B kmin, ∀i, k, i ∈ pair(k) (5)

 0 ≤ xij ≤ cl, ∀i, j (6)

Inequality (4) shows the bandwidth allocation is subject 
to the constraint of the bandwidth capacity of physical 
links. Inequality (5) guarantees that the bandwidth allocated 
to each VM-VM pair meet the minimum requirement of 
the application that the pair belongs to. Inequality (6) is the 
boundary of bandwidth that can be allocated. 

5 Solution

5.1 Transforming in a Convex Problem
In the aforementioned formulation, we use the M/

M/1 queuing formula to denote the queuing delay which 
is experienced by each application. However, when the 
physical link is over utilized, in other words, γw > 0, the delay 
function will not be defined. By the way, it is very time 
expensive to calculate the unique solution of the problem. 
To overcome this problem, we resort to mathematical 
approximation of the M/M/1 formula.

In order to obtain the unique solution of our problem, 
we need to make some changes to let the formulation of our 
problem to be convex.

Changing the objective from maximize –Σ k = 1
K λ kUk 

to minimize –Σ k = 1
K λ kUk, we can transform the previous 

optimization problem (3) to the following problem:

 Minimize –Σ
k = 1

K

λ kUk (7)

Subject to (4), (5), (6)
For mathematical convenience and quick convergence, 

similar to [29-30], we use a piecewise linear approximation 
function f(uw) instead of the formula 1/γ w.  In the 
approximation function, uw is the utilization of link w, 
which is the ratio of allocated bandwidth on link w to the 

capacity of link w. We define f(uw) as a continuous function 
with f(0) = 0 and use a derivative in the utilization uw of 

 f '(uw) = �

0.1
0.2
0.4
0.8
1.6
100

0 ≤ uw < 0.2
0.2 ≤ uw < 0.4
0.4 ≤ uw < 0.6
0.6 ≤ uw < 0.8
0.8 ≤ uw < 1

1 ≤ uw

 (8)

In a word, the delay function is changed from β k xkw

γw
  

to β kxkw f(uw). Since f(uw) is non-decreasing, twice 
differentiable and convex, β kxkw f(uw) is convex. And  
–α kxkw is linear and convex, so -Uk is convex. Because the 
non-negative weighted sum of convex functions is convex,  

–Σ
k = 1

K

λ kUk is convex. Moreover, all of the constraints are 

affine or linear. Therefore, the optimization problem (7) is a 
convex problem [31].

Standard convex optimization solvers could be used to 
solve this problem. In this paper, we will use interior point 
algorithm, which is integrated in the Matlab optimization 
toolbox to solve our utility driven bandwidth allocation 
problem. 

5.2 Implementation Discussion
Our mechanism provides utility driven bandwidth 

guarantee for different types of cloud applications by 
implementing bandwidth allocation in the virtualization 
layer of physical servers. As long as the virtual switch 
deployed in the virtualization layer receives the optimal 
solution from our central management unit, it will 
automatically set a bandwidth capping to each VM-VM 
pair with

 upi = Σ
j = 1

pi

 xij (9)

Another thing the virtual switch needs to do is to 
allocate the bandwidth xij to each corresponding path j. We 
could make a simple modification on current commonly 
used Equal Cost Multiple Path (ECMP) routing protocol 
in data centers. By adding a weight to each path, we can 
distribute packets to each path according to Xi = (Xi1, Xi2, ..., 
Xipi

) . The weight can be calculated by

 wij = 
xij

xikΣ k = 1
pi  (10)
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6 Simulations

We conduct extensive simulations to show that the 
proposed utility driven bandwidth allocation mechanism 
outperforms bandwidth-based algorithm and delay-based 
algorithm. The bandwidth-based allocation algorithm can 
be seen as weight-based bandwidth allocation algorithm, 
which is commonly used in recently proposed data center 
network bandwidth allocation mechanisms [9-11, 13]. 
And the delay-based bandwidth allocation algorithm was 
proposed by Javed et al. [29], which is used to minimize 
the end-to-end delay experienced by inelastic traffic in 
Internet. All experiments are performed on a server with 
16G memory and 3.3GHz Six-Core Processor using Matlab 
optimization toolbox. The algorithm parameter is set to be 
“Interior point.” We use three typical structures: Tree [24], 
VL2 [25], and Fat-Tree [23], which represent data center 
networks of different architectures. Small scale instances of 
the three topologies are shown in Figure 2.

(a) Tree

(b) VL2

(c) Fat-Tree

Figure 2 Three Typical Data Center Architecture

Tree structure is commonly used in enterprise data 
centers, which is built from high-cost hardware. Due to 
the cost of the equipment, the capacity between different 
branches of the tree is typically oversubscribed by factors 
of 1:5 or more, which limits the communications between 
servers/virtual machines. VL2 and Fat-Tree are designed for 
cloud-oriented data centers built from commodity switches, 
providing extensive path diversity between servers. 
Compared to Fat-tree, VL2 has more redundant paths for 
each VM-VM pairs. We mark each links according to the 
approach we proposed in Section 3, the number is shown 
on each physical links.

In all simulations, bandwidth capacity of each link 
is set to be 10 Gbps. We simulate a group of applications 
(VM-VM pairs) running in all network topologies. The 
scales range from 10 to 100 VM-VM pairs. The throughput-
sensitive and delay-sensitive coeffi cients of applications are 
set to be random within [1, 10], the minimum bandwidth 
requirements are set to be random within [1, 10] Mbps. In 
each experiment, we set parameters in the interior point 
algorithm with maximum function evaluation times being 
100,000 to guarantee the algorithm will converge to the 
optimal solution.

6.1 Comparisons of the Objective Value
We set the derivative of the delay function according 

to Equation (8). Figure 3 shows the comparisons of the 
objective value in three different types of bandwidth 
allocation algorithm. In all three network topologies, the 
utility-driven bandwidth allocation algorithm has the 
highest objective values in different settings. According 
to the setting of the derivative of the delay function, the 
value of the delay function plays a more important role in 
the evaluation of the objective value. So the delay-based 
algorithm is better than bandwidth-based mechanism. 
Because the bandwidth-based algorithm doesn’t consider 
the delay-sensitive feature of cloud applications, it’s the 
worst bandwidth allocation algorithm in this scenario. 

 Though the result of delay-based scheme approaches 
our scheme, if we compare these two schemes in detail, we 
can fi nd that the objective value of our scheme has average 
85 times more than the value of delay-based mechanism in 
tree topology. And the number is 108 and 165 in VL2 and 
Fat-Tree topology respectively.

From Figure 3, we can also find the allocation result 
is fluctuant in Tree and Fat-Tree topologies when we use 
bandwidth-based algorithm. The reason is that these two 
topologies have less redundant paths than VL2 topology. 
Take the communication between VM 1 and VM 16 as 
an example, the number of redundant paths is 8, 16, 4 
respectively in Tree, VL2 and Fat-Tree topology.
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 6.2 Comparisons of Application Utilities
To show how our utility-driven bandwidth allocation 

scheme works for different types of cloud applications, we 
conduct experiments in three structures with 100 different 
types of applications (VM-VM pairs), each pair represent 
one type of application. Both the throughput sensitive 

coeffi cient and delay sensitive coeffi cient range from 1 to 
10. The results are shown in Figure 4.

(a) Tree

(b) VL2

(c) Fat-Tree

Figure 4 Comparisons of Application Utilities

It is shown that in all topologies, when we fix 
throughput sensitive coefficient α, the utility that 
application obtained increases with the growing of delay 
sensitive coefficient β. However, when we fix delay 
sensitive coefficient β, the utility appears to be fluctuant. 
This phenomenon most probably resulted from two 

(a) Tree

(b) VL2

(c) Fat-Tree

Figure 3 Comparisons of the Objective Value
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reasons: (1) the minimum bandwidth requirements vary 
from different applications, value of minimum bandwidth 
requirement determines the basic utility of throughput 
sensitive application. (2) VMs belonging to throughput 
sensitive applications may be placed in the same physical 
server. Therefore, the utility introduced by throughput is 
constrained by the capacity of access links. The inherent 
reason behind these two reasons is: the placement of virtual 
machines/VM-VM pairs affects the result. Taking VM 
positions into consideration to share the data center network 
is a direction of our future research.

The utility of applications is not only determined 
by the combination of throughput sensitive and delay 
sensitive coefficient, but also determined by the capacity 
of the physical links it uses and other applications who 
compete for those links. In Figure 4(a), because the Tree 
topology has the least number of physical links (16 in 
our simulations), all applications compete for those rare 
capacity. Some applications such as application with α = 2, 
β = 10 does not get deserved utility. This condition has been 
improved with the use of cloud-oriented topology Fat-Tree 
and VL2. Furthermore, the VL2 topology has the largest 
number of redundant path for each application. Though 
the largest utility in VL2 is less than the one in Fat-Tree 
topology, the utility each application got is more regular.

7 Conclusions

In this paper, we studied the network sharing problem 
in cloud data centers. Instead of only considering how 
many link bandwidths should be allocated to applications, 
we also consider the path delay that is experienced by 
each application. Utility function is constructed for each 
application according to the importance of throughput and 
delay sensitivities. We reformulate the utility maximization 
problem to a convex problem, hence the unique optimal 
solution can be found by applying standard convex solvers. 
Extensive numerical simulations verified that our proposed 
mechanism outperforms bandwidth-only and delay-
only allocation schemes. The mechanism benefits both 
tenants and cloud providers. Besides, it opens the door for 
designing differentiated bandwidth pricing model and the 
on-demand access to network resource offered by cloud 
data centers becomes possible.
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