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Abstract 

Many flows in data centers have deadlines and missing deadlines would hurt application performance such as affecting 
response quality in Web applications or delaying computing jobs in MapReduce-like systems. However, transmission 
control protocol (TCP) which is widely used in data centers now cannot provide deadline-aware transmission service. 
Service differentiation only distinguishes flows with different priority but is unable to guarantee completion time. In this 
paper, we propose a new protocol named deadline-aware TCP (DATCP) to provide deadline-aware transmission service for 
the commoditized data centers, which can be used as a flexible method for flow scheduling. DATCP combines flow 
urgency and importance to calculate precedence. Flow urgency is dynamically adjusted according to the gap between 
desired rate and actual throughput. Setting importance can avoid starving the important but no-urgent flows. Furthermore, a 
flow quenching method is presented which allows as many high precedence flows as possible to meet deadlines under 
heavy network load. By extensive simulations, the performance of DATCP was evaluated. Simulation results show that 
DATCP can make flows meet deadlines effectively.  
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1  Introduction   

Currently data centers are hosting more and more 
applications, including online services such as Web search, 
social networks, and off-line application such as data 
mining based on MapReduce [1]. All of these applications 
generate many flows. Online services are comprised of 
multiple components like authentication, database, file 
system, management, and so on. These components are 
deployed across entire data center with intricate 
dependencies [2]. For example, social network service 
requires access to an authentication service for verifying 
users, and composes web page content by aggregating data 
spread across different data stores. Many flows are 
generated during multiple service components 
communicating with each other. Moreover, there are also a 
lot of flows in MapReduce workload at each computing 
stage, such as job initialing, data distributing, map phase, 
shuffle phase, reduce phase and result aggregation.  
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Flows in data centers usually have deadlines and 
missing deadlines would hurt application performance. For 
online service, flows generated by interactive components 
are usually latency-sensitive. Missing deadlines typically 
hurts response quality and wastes network bandwidth. 
Ultimately, operator revenue is affected [3]. In MapReduce, 
although flows are usually not latency-critical, the flows 
need to complete early to finish the computing job. For 
example, in shuffle phase, reduce tasks begin only if all 
outputs are received from multiple map tasks. Hence flows 
not complete in time will delay the computing jobs and 
then affect utilization of MapReduce cluster [4].  

However, TCP which makes up more than 95% of the 
data center traffic [5–6] cannot provide deadline-aware 
transmission services. TCP tries to divide bottleneck 
bandwidth fairly and have no any application information. 
Moreover, service differentiation like DiffServ [7] and 
end-to-end mechanisms [8] can distinguishes flows with 
different priorities. Flows with high priority get more share 
than ones with low priority. But service differentiation 
only provides flows with proportional throughput and is 
unable to guarantee the flow completion time.  
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In this paper, we propose a new transport protocol 
named DATCP to provide deadline-aware service for the 
commoditized data centers, which can be used as a flexible 
method to schedule flows. DATCP dynamically adjusts 
flow urgency based on the gap between desired rate and 
actual throughput. High urgency flows would get more 
bandwidth share. The urgency is increased every 
round-trip time (RTT) until actual throughput is equal or 
greater than desired rate so that the flow would meet 
deadline. To avoid starving the important but not-urgent 
flows, DATCP combines importance and urgency of flows 
to calculate the precedence according to the 
urgent/important matrix [9]. The importance is the same as 
conventional priority and is due to what the flow is used 
for. Therefore, the precedence of TCP flows can 
dynamically be changed according to network situation. 
When network load is too heavy, not all flows can meet 
deadlines, a flow quenching method is presented which 
makes low precedence flows quenched to allow other high 
precedence flows to meet deadlines. 

DATCP needs the applications get flow size at flow 
initiation time. It is feasible in data centers. For example, 
many web applications have knowledge of flow size in 
advance. This holds for MapReduce. Even for application 
where this condition does not hold, the application 
designer can typically provide a good estimate for the 
expected flow sizes. Moreover, DATCP only needs minor 
modification to existing TCP and makes use of explicit 
congestion notification (ECN) [10], a feature already 
available in current commodity data center switches. 
Deploying DATCP in datacenters has no effect on the 
external traffic as connectivity to the external Internet is 
typically managed through load balancers and application 
proxies that effectively separate internal traffic from 
external [6].  

By extensive simulations, the performance of DATCP 
was evaluated. Simulation results show that DATCP can 
make flows meet deadlines effectively and without 
starving the important but not-urgency flows. A scenario of 
MapReduce was also considered to show how to schedule 
flows using DATCP.  

The remainder of this paper is organized as follows. In 
Sect. 2 we introduce background and related works. The 
DATCP algorithm is presented in Sect. 3. Sect. 4 provides 
the evaluation results. Finally, Sect. 5 concludes the paper.  

 

2  Background and related works 

2.1  Benefits of deadline-aware 

We take two examples in Ref. [3] to show benefits of 
deadline-aware. The first one, two flows share a bottleneck 
link and one of them has a tighter deadline than the other. 
Today’s TCP tries to share link fairly and the flows would 
finish at similar times, so only one flow meets the deadline, 
as shown in Fig. 1(a). However, if flows are 
deadline-aware and the deadlines are set to flows, flow 1 
would get enough share to meet the deadline, and then 
both of the two flows would meet the deadlines, as shown 
if Fig. 1(b).  

 
(a) Status quo 

 
(b) Deadline aware  

Fig. 1  Two flows with different deadlines 

The second one, multiple flows share a bottleneck link 
and have same deadline. Assume that network load is 
heavy and network capacity is not enough to allow all the 
flows to meet the deadline. With today’s TCP, as illustrated 
in Fig. 2(a), all flows get their fair share and finish at 
similar times and all of them would miss the deadline. 
Given flows deadline-aware, if some flows are quenched, 
there would be allow other flows to meet the deadline, as 
shown in Fig. 2(b).  
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(a) Status quo 

 
(b) Deadline aware (flow 2 is quenched) 

Fig. 2  Multiple flows with the same deadline 

2.2  Flows in MapReduce-like systems 

MapReduce is a computing framework proposed by 
Google for processing highly distributable problems across 
huge datasets using a large number of computers [1]. There 
are a lot of flows in Hadoop at each computing stage, such 
as job initialization, data distributing, map phase, shuffle 
phase, reduce phase and result aggregation. Fig. 3 presents 
the dataflow of Hadoop [11]. Input data is divided into 
splits, and a distinct map task is launched for each split. 
Inside each map task, map stage applies a map function to 
the input data, and spill stage stores map output on local 
disks. In addition, a distinct reduce task is launched for 
each partition of the map outputs. Inside each reduce task, 
the copier and merge stages also called shuffle stage run in 
a pipelined fashion, fetching the relevant partition over the 
network and merging the fetched data respectively; after 
that, the sort and reduce stages merge the reduce inputs 
and apply the reduce function respectively. 

The size of most of these flows can be known before 
initiation. At job initialization, the JobTracker distributes 
the job JAR package to the TaskTracker. The size of the 
job JAR package is known in advance. For data 
distribution of Hadoop distributed file system (HDFS) [11] 
and Google file system (GFS) [12], block size is preset. At 
shuffle step, since the reducers copy map outputs after the 

map tasks have finished, the flow size is also known in 
advance.  

 
Fig. 3  Dataflow graph of the Hadoop 

Map tasks within a job always have similar lengths 
because they run the same function [13]. So job scheduler 
can speculate finish time of maps. Flows of jobs which are 
map up of few flows should be set shorter deadlines. To 
reduce job completion time and increase utilization of 
Hadoop cluster, flows deadlines should be set carefully. 
Flows deadlines setting can be used for flows scheduling. 
Therefore, DATCP provide a flexible method for Hadoop 
to schedule flows.  

2.3  Related works 

There are some research works on data center transport 
protocol. A hot problem of TCP in data centers is the incast 
throughput collapse [14–15], where application throughput 
drastically collapses when multiple senders simultaneously 
send data to a receiver. But these works are 
deadline-agnostic. Other works propose new data center 
transport protocols [3,6]. DCTCP [6] aims to ensure low 
latency for short flows and good utilization for long flows 
by reducing switch buffer occupation meanwhile 
minimizing buffer oscillation. Reducing the switch buffer 
occupation can lower queuing time and benefit short flows 
while minimizing the oscillation can maintain high 
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throughput of links and do not affect the throughput of 
long flows. However, DCTCP does not provide the 
deadline-aware service and even has no service 
differentiation. The work most related to ours is D3 [3]. D3 
uses explicit rate control to apportion bandwidth according 
to flow deadlines. Given a flow’s size and deadline, source 
end hosts request desired rates to switches. The switches 
assign and reserve allocated rates for the flows. However, 
most data center switches do not support rate allocation 
and reservation due to the trend of constructing data 
centers with commodity servers and switches [16–18]. 
Unlike D3, DATCP proposed in this paper only needs 
minor modification to existing TCP and makes use of a 
feature already available in current commodity data center 
switches.  

3  The DATCP algorithm 

The basic idea is that DATCP adjusts flow precedence 
dynamically to maintain flow rate and then make flows 
meet their deadlines. Flow rate is related to not only its 
precedence but also the number and precedence of other 
flows. This is because that flow precedence only brings 
proportional throughput differentiation, i.e., flows receive 
their weighted fair share of the network bandwidth. 
Therefore, flow precedence should be adjusted 
dynamically to let flow get the desired throughput.  

3.1  Calculating precedence based on both urgency and 
importance  

Flow precedence is inspired by the urgent/important 
matrix [9], which is a powerful way of thinking about 
priority, as shown in Fig. 4.  

 
Fig. 4  Urgent/Important matrix 

Using it helps people overcome the natural tendency to 
focus on urgent activities, so that you can keep clear 
enough time to focus on what's really important. Similarly, 
we define urgency and importance to flows. The urgency 
of a flow, which is adjusted dynamically, reflects the gap 

between its bandwidth demand and actual throughput. The 
importance of a flow is up to its usage and what service it 
belongs to. Then we calculate precedence based on both 
urgency and importance. The precedence is similar to 
conventional priority.  

Algorithm 1 demonstrates the scheme of flow 
precedence calculating. The reason why Ravg = Rlast in slow 
start phase is that it can make Ravg converge quickly. Flow 
urgency is adjusted dynamically according to the gap 
between desired rate Rdesired and actual throughput Ravg. 
When the actual throughput is smaller than the flow 
demand, the urgency is increased to try to get more 
capacity share. When the actual throughput is larger than 
the flow demand, the urgency is decreased. To avoid too 
large or negative urgency, maximum and minimum 
urgency are set. Flow importance is preset according to its 
usage and what service it belongs to. Setting importance 
can avoid starving the important but not-urgent flows. We 
calculate precedence P based on both importance and 
urgency. The precedence P is also updated every window 
of data (roughly one round trip time (RTT)). 

Algorithm 1   Flow precedence calculating 
Description: flow precedence is calculated based on 

both urgency and importance. The importance is preset. 
The urgency is adjusted dynamically according to the gap 
between its desired rate and actual throughput. 

Input:  
flow size Vtotal, flow deadline Tdeadline, flow importance I. 

Variable Definition:  
P: flow precedence.  
U: flow urgency. 
Umax: the maximum flow urgency. 
Umin: the minimum flow urgency. 
Vrtt: data volume sent last RTT.  
Vremain: remaining data volume.  
Trtt: length of last RTT.  
Tremian: remaining time before the deadline.  
Tnow: current time. 
Rlast: flow throughput of last RTT. 
Ravg: present actual throughput.  
Rdesired: flow bandwidth demand. 
α: parameter for updating Ravg. 
φ : proportion of importance during  precedence calculation. 
G: the maximum granularity of urgency adjusting. 
g: the granularity of urgency adjusting 

Initialization:  
Vremain = Vtotal;  
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Tremian = Tdeadline – Tnow; 
Algorithm:  

  When receive every window of data (roughly one RTT) 
  Vremain = Vremain – Vrtt;; 
  Tremian =  Tremian – Trtt; 
  Rlast = Vrtt / Trtt; 
  if (in slow start phase) then 
     Ravg = Rlast; 
  else if (in congestion avoidance phase) then 
     Ravg =αRavg + (1–α)Rlast; 
  end if 
 Rdesired = Vremain / Tremian; 
 g = abs(Rdesired – Ravg) / Ravg 
 if (g > G) then 
    g = G; 
 if (Rdesired > Ravg) then 
    U += g; 
    if (U > Umax) then 
        U = Umax;  
    end if 
 else then 
     U –= g; 
     if (U < Umin) then 
       U = Umin; 
     end if 
 end if 
 P =φI + (1–φ)U; 

3.2  Adjusting congestion window according to given 
precedence 

The idea is that flows with varying precedence take 
different response to network congestions. High 
precedence flows should cut window responding to 
congestion more mildly and low precedence flows more 
severely. This can achieve proportional throughput 
differentiation, e.g., throughput of a flow with precedence 
2 is twice as a flow with precedence 1. In other words, 
high precedence flows have higher proportion of the 
capacity of the shared link than low precedence flows. 
DATCP dynamically allocates bandwidth by per flow 
according to the precedence not by per precedence.  

As shown in Fig. 5, DATCP senders send packets to 
receiver. If network congestion happens, the switches mark 
the incoming packets. Then receivers echo the ACKs of 
marked packet to sender, and then congestion is detected 
by sender and sender take reaction according to its 
precedence.  

 
Fig. 5  The combination of DATCP and ECN 

1) Detecting the network congestion 
DATCP uses random early detection queue (RED) in 

conjunction with ECN which is already available in 
current commodity switches. RED/ECN monitors the 
average queue size and marks incoming packets based on 
statistical probabilities instead of dropping. DATCP use a 
variant of RED which marks the incoming packets based 
on instantaneous queue length instead of average queue 
length, as shown in Fig. 6. As the senders could receive 
marked ACKs during the first one or two RTTs to tame the 
size of follow up bursts, this could prevent buffer 
overflows. This is the same with DCTCP [6]. But the 
difference between DATCP and DCTCP is that we set low 
and high marking threshold different value. The benefit of 
this is that we can speculate congestion degree more 
accurately. In DCTCP, the low and high marking threshold 
are equal. If the instantaneous queue length exceeds K, all 
packets are marked and the congestion degree is hard to 
calculate accurately.  

 
Fig. 6  DATCP use a variant of RED: marking is based on the 
instantaneous rather than average queue length 

We do not change the ECN-support TCP receiver. Upon 
receiving a marked packet, the TCP receiver echoes back 
this congestion indication using the ECN-Echo flag in the 
TCP header in a series of acknowledgements (ACKs) 
packets until it receives confirmation from the sender that 
the congestion notification has been received [10].  

2) DATCP sender behavior  
Standard TCP use additive increase multiplicative 

decrease (AIMD) algorithm to adjust congestion window 
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size. The AIMD (a, b) policy increases the congestion 
window by a fixed amount a every round trip time. When 
congestion is detected, the sender decreases the congestion 
window by a multiplicative factor b. For standard TCP, a = 
1, b = 0.5.  

Flows with varying AIMD parameters take different 
responses to network congestions to get different 
throughput. DATCP does not change AIMD algorithm of 
TCP except the multiplicative decrease factor b. High 
precedence flows are set smaller b and low precedence 
flows are set bigger b. The reason we choose the 
multiplicative decrease factor b rather than the additive 
increase amount a is that this can minimize the traffic burst. 
Let’s take an example, sending a 1 500 B packet in 0.3 ms 
RTT needs 40 Mbit/s bandwidth. Although smaller 
increase mount a also means smaller traffic burst, a lot of 
tinny packets would be generated and link utilization 
would be affected.  

3) Determining multiplicative factor b 
DATCP adjusts the window decrease factor b to provide 

throughput differentiation. Suppose there are two flows 
competing for a bottleneck link. The maximum congestion 
window sizes of the two flows are W1 and W2 respectively. 
When congestion is detected, two flows decrease their 
window by b1 and b2 respectively, as illustrated in Fig. 7.  

 
Fig. 7  The window size of flows 

The ratio of two flows throughput is the ratio of average 
congestion window size.  
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For given P1 we set b1, and then for given P2 we can get 
b2 according to the Eq. (5). Usually we set the precedence 
of standard TCP to 1 and b to 0.5. 

3.3  Flow quenching 

When network load is too heavy, capacity available to 
flows is not enough to allow all the flows complete before 
deadlines, so some low precedence flows should be 
quenched to make the remaining high precedence flows 
meet the deadlines.  

Algorithm 2 illustrates the scheme of flow quenching. If 
actual throughput is smaller than bandwidth share, DATCP 
tries to increase urgency to get higher Ravg. Гprofit�0 means 
that flow cannot get more bandwidth share. If flows cannot 
meet deadlines with the current Ravg and Гprofit�0, flows 
should be quenched. In order to mitigate the throughput 
instability, DATCP quenches flows when Гprofit�0 for 
several times continuously. Moreover, flows should be 
quenched with a certain probability. This could avoid flow 
quenching synchronization. Low precedence flows are 
quenched with a bigger probability. This makes sure as 
many high precedence flows as possible meet the 
deadlines. We set the quenching probability as pquench. The 
quenching probability is related to the flow precedence. 
DATCP should allow more flow with high precedence 
complete first.  

It is should be noted that flows could just be suspended 
for a period of time rather than be killed. When network 
load is light, the flows can continue to transmit data. 
However, whether flows are killed or just suspended in 
flow quenching depends on the application. For interactive 
web applications, overtime flows should be quenched 
because flows missing the critical deadlines are useless to 
applications. But for MapReduce applications, the 
deadlines are not critical and the computing tasks need all 
the flows to complete, so overtime flows should be 
suspended.  

Algorithm 2  Flow quenching 
Description: low precedence flows are quenched with a 

bigger probability. This can make higher precedence flows 
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meet their deadlines. 

Input:  
flow size Vtotal, flow deadline Tdeadline, flow importance I. 
ε: the flag identifies flows are killed or just suspended 

Variable Definition:  
P: flow precedence.  
Pmax: the maximum flow precedence.  
Ravg: present actual throughput.  
R’avg: last actual throughput  
Гprofit: the increase proportion of Ravg after the added urgency. 
Rdesired: flow bandwidth demand 
θ: the continuous times Гprofit � 0 after increase urgency. 
pquench: the quenching probability. 
Θ: the maximum θ. 

Initialization:  
θ = 0; 

Algorithm:  
  When receive every window of data (roughly one RTT) 
  if (urgency is increased last RTT) then 
     Гprofit  =  Ravg – avgR′ ; 

     if (Гprofit � 0) then 
        θ = θ + 1;  
        if (θ � Θ) then 
           pquench = 1 – P / Pmax; 
           flow is quenched with pquench and whether is killed 

according to ε; 
           θ = 0; 
       end if 
    end if 
 else then  
    θ = 0; 
 end if. 

3.4  Discussion 

Although above we let DATCP use ECN to detect 
network congestion, DATCP can also be deployed as pure 
end-based protocol and without any middle network 
support. However, since the bandwidth-delay product is 
small in data center networks, congestion window size of 
each flow is usually small. If not using ECN, network 
congestion is usually detected by packet losses rather than 
duplicated ACKs [19]. This would take longer time to 
detect congestion and affect the performance of DATCP. 
Moreover, the idea of DATCP is also suitable to rate-based 
TCP. The result of DATCP for rate-based congestion 
control is more accurate than window-based congestion 
control because it is difficult to maintain a rate in 

window-based congestion control especially in data center 
networks.  

4  Evaluation 

In this section, we perform extensive simulations with 
the network simulator NS2 (http://www.isi.edu/nsnam/ns/) 
to evaluate the performance of DATCP. A MapReduce 
scenario is also considered to introduce how to schedule 
flows using DATCP. The network model used in the 
simulations is that multiple servers are connected to a 
top-of-rack switch. The switch supports RED/ECN, an 
active queue manage scheme already available in current 
commodity switches.  

4.1  Simulation parameters setting 

We set simulation parameters as shown in Table 1.  

Table 1  The simulation parameters 
Parameters Value 

Capacity of links 1 Gbit/s 
Propagation delay of links 75 µs 
Buffer size of each switch port 200 KB 
Max_p of RED 1.0 
Min_threshold of RED 80 KB 
Max_threshold of RED 120 KB 
Queue weight of RED 1.0 
MinRTO 10 ms 
Packet size 1 500 B 
Maximum window 50 packets 

The capacities of links are set to 1 Gbit/s and the buffer 
size of each switch port is set to 200 KB. Both values are 
typical in current data centers. Since the RTT of data 
center network is very small, usually only hundreds of µs, 
we set the minimum retransmission timeout (RTO) to 10 
ms instead of the default 200 ms. 10 ms is a typical value 
used in data center networks [6]. We set the queue weight 
of RED to 1.0 and then packets marking are based on the 
instantaneous queue length. Therefore the sender can 
detect the congestion quickly.  

In addition, the precedence of standard TCP is set to 1, 
and a = 1, b = 0.5. According to Eq. (5), we can get the 
window decrease factor b for other precedence flows. For 
all flows, we set the window increase factor a to 1. This 
could limit the traffic burst. Moreover, we set the average 
throughput calculate factor a to 0.1.  

4.2  Basic of DATCP algorithm  

We will analyze the basic of DATCP algorithm in this 
subsection.  

Deadline-aware: the deadline-aware feature of DATCP 
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under different deadlines is evaluated. We set up following 
simulation scenario: there are six flows competing for a  
1 Gbit/s link, and three of them have deadlines and the 
others have no deadline. The size of the flows with a 
deadline is 100 MB and others have infinite data to send. 
The throughput of flows is computed at 0.1 s interval. We 
set the parameter φ to 0, i.e., only urgency is considered in 
this subsection. The deadlines are set to 4 s, 3 s 
respectively and the scenario of no deadline is also 
presented. The throughput of the flow under different 
deadline is shown in Fig. 8. As we can see from the figure, 
DATCP can meet the deadlines effectively. The throughput 
of background flows are also shown in the figure. The 
throughput of flows within the same urgency is almost 
identical so the fairness of DATCP is good. This holds for 
flows with no deadline.  

 
(a) No deadline 

 
(b) Deadline is 4 s 

 
(c) Deadline is 3 s 

Fig. 8  The throughput of flows with different deadlines 

Convergence: to show that DATCP flows quickly 
converge to their weighted fair rate, we perform a 
simulation similar to above. G is set to 0.05. We first start 
three deadline-agnostic flows, and then we sequentially 
start three deadline-aware flows, spaced by 1 s. The 

deadlines are all set to 4s. The time series depicting the 
overall flow throughput is shown in Fig. 9. As DATCP 
flows come and go, they quickly converge to their 
weighted fair rate. 

 
Fig. 9  The convergence test of DATCP 

Combining importance and urgency: next the effects of 
importance are evaluated. We still use the simulation 
scenario above except importance of one background flow is 
set to 1, 2, 3 respectively. The precedence is calculated by 
both the importance and urgency of the flows and the 
parameter φ is set to 0.5. As we can see from the Fig. 10, the 
background flow with higher importance got more link share. 
This can avoid starving important but not-urgent flows. 

 
Fig. 10  The throughput of flows with different importance 

Flow quenching: we used another simulation scenario. 
There are 4 flows sized 200 MB with same deadline and 
same importance. The deadline is set to 6 s. If no flow is 
quenched, and then all flow cannot finish before deadline, 
as illustrated in the Fig. 11(a). Fig. 11(b) plots the result 
that DATCP quenched one flow so that other 3 flows meet 
the deadline.  

Conventional TCP with priority: TCP with priority can 
give some flow more bandwidth share. But the share is 
proportional. We simulated 3 TCP flows with priority is 3 
and some background flows share a 1 Gbit/s bottleneck link. 
The number of background flow is set to 3 and 6 
respectively; the throughput of TCP flows is shown in   
Fig. 12. As we can see, same priority leads to different 
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completion time under different background flow number. 
That is, TCP with priority could not make sure flows meet 
deadlines. 

 
(a) No flow quenching 

 
(b) With flow quenching 

Fig. 11  The effect of flow quenching 

 
(a) 3 background flows 

 
(b) 6 background flows 

Fig. 12  Flow throughput of conventional TCP with priority 
(priority is 3) 

4.3  Generated traffic scenario 

In this scenario, we evaluate the performance of our 
design under the generated traffic. Three deadline-agnostic 
background flows which have infinite data to send are first 
generated. We then generate three deadline-ware flows 
every ten seconds. The flow size is uniformly distributed 
on 10 MB~100 MB. The deadlines are also on uniform 
distribution and three kinds of deadlines are evaluated: lax, 
moderate and tight. We compare DATCP with TCP and D3 
in the simulation. The ratio of flows meeting deadlines is 
shown in Fig. 13. As we can see, DATCP outperforms TCP 
under all three kinds of deadlines. Though D3 has similar 
results with DATCP, it needs new switches and new 
protocols. Unlike D3, DATCP only needs minor 
modification to existing TCP and makes use of a feature 
already available in current commodity data center 
switches. 

 
Fig. 13  The generated traffic scenario 

4.4  MapReduce scenario 

We consider a simple MapReduce scenario to show that 
DATCP could be used as a flow scheduling method. 
Suppose that there are two jobs ongoing. Job A is made up 
of four maps and a reduce while job B consists of two 
maps and a reduce. Jobs are scheduled by fair share 
Scheduler. Both job A and job B have two maps completed. 
Job B only has a reduce left but job A has two maps and a 
reduce left. Reduce tasks are going to copy the output of 
the maps. We suppose that the two reduce tasks are located 
in the same server. So there are four flows sharing the 
downlink of the server. Obviously, the two flows of job B 
are more urgent than the other two flows of job A because 
job B will finish once the two flows complete. After job B 
completes, the resource will be released and can be used 
for other jobs. Then the utilization of MapReduce cluster 
will be increased. Therefore, flows of job B should be 
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scheduled to complete as quickly as possible.  
Next we will show how to schedule flows using DATCP. 

There are four parameters needed: flow size, flow deadline, 
flow importance and whether flows are killed or just 
suspended in flow quenching. We set the size of every map 
output to 100 MB and the length of all tasks to 5 s. In 
order to let flows of job B complete quickly, we set the 
deadline of flows of job B to 2 s and flows of job A to 5 s 
which is the same as the task length. All flows have no 
importance and flows are suspended in flow quenching. 
The completion times of two jobs with DATCP and TCP 
are evaluated. As shown in the Fig. 14, the completion 
time of job B with TCP is 3.2 s and with DATCP is 2 s 
while the completion of job A is not affected.  

 
Fig. 14  The MapReduce scenario 

From above we can see that DATCP can be used for 
flow scheduling and a good flow scheduling algorithm can 
improve the application performance greatly. But the 
strategy flow scheduling is out of the scope of this paper 
and we will study it in our future work. 

5  Conclusions 

In this paper, we present DATCP, a new transport 
protocol for providing deadline-aware transmission service 
for the commoditized data centers. DATCP combines flow 
urgency and importance to calculate precedence. And flow 
urgency is dynamically adjusted according to the gap 
between desired rate and actual throughput. DATCP only 
needs minor modification to existing TCP and makes use 
of ECN, a feature already available in current commodity 
switches. We evaluate DATCP via extensive simulations. 
Our results suggest that DATCP can make flows meet 
deadlines effectively without starving the important but 
not-urgency flows. 

DATCP provides a flexible method to schedule flows. 
The strategy of flow scheduling is related to specific 
application and a efficient flow scheduling algorithm can 

improve the application performance greatly. We will 
study the flow scheduling using DATCP in future works.  
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