
 December 2012, 19(6): 52–62
www.sciencedirect.com/science/journal/10058885 http://jcupt.xsw.bupt.cn

The Journal of China
Universities of Posts and
Telecommunications

DATCP: deadline-aware TCP for the commoditized data centers
ZHANG Peng (�), WANG Hong-bo, LI Yang-yang, DONG Jian-kang, CHENG Shi-duan

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Many flows in data centers have deadlines and missing deadlines would hurt application performance such as affecting
response quality in Web applications or delaying computing jobs in MapReduce-like systems. However, transmission
control protocol (TCP) which is widely used in data centers now cannot provide deadline-aware transmission service.
Service differentiation only distinguishes flows with different priority but is unable to guarantee completion time. In this
paper, we propose a new protocol named deadline-aware TCP (DATCP) to provide deadline-aware transmission service for
the commoditized data centers, which can be used as a flexible method for flow scheduling. DATCP combines flow
urgency and importance to calculate precedence. Flow urgency is dynamically adjusted according to the gap between
desired rate and actual throughput. Setting importance can avoid starving the important but no-urgent flows. Furthermore, a
flow quenching method is presented which allows as many high precedence flows as possible to meet deadlines under
heavy network load. By extensive simulations, the performance of DATCP was evaluated. Simulation results show that
DATCP can make flows meet deadlines effectively.

Keywords data center networks (DCN), deadline-aware transmission service, TCP, flow scheduling

1 Introduction

Currently data centers are hosting more and more
applications, including online services such as Web search,
social networks, and off-line application such as data
mining based on MapReduce [1]. All of these applications
generate many flows. Online services are comprised of
multiple components like authentication, database, file
system, management, and so on. These components are
deployed across entire data center with intricate
dependencies [2]. For example, social network service
requires access to an authentication service for verifying
users, and composes web page content by aggregating data
spread across different data stores. Many flows are
generated during multiple service components
communicating with each other. Moreover, there are also a
lot of flows in MapReduce workload at each computing
stage, such as job initialing, data distributing, map phase,
shuffle phase, reduce phase and result aggregation.

Received date: 28-05-2012
Corresponding author: ZHANG Peng, E-mail: zhp@bupt.edu.cn
DOI: 10.1016/S1005-8885(11)60318-X

Flows in data centers usually have deadlines and
missing deadlines would hurt application performance. For
online service, flows generated by interactive components
are usually latency-sensitive. Missing deadlines typically
hurts response quality and wastes network bandwidth.
Ultimately, operator revenue is affected [3]. In MapReduce,
although flows are usually not latency-critical, the flows
need to complete early to finish the computing job. For
example, in shuffle phase, reduce tasks begin only if all
outputs are received from multiple map tasks. Hence flows
not complete in time will delay the computing jobs and
then affect utilization of MapReduce cluster [4].

However, TCP which makes up more than 95% of the
data center traffic [5–6] cannot provide deadline-aware
transmission services. TCP tries to divide bottleneck
bandwidth fairly and have no any application information.
Moreover, service differentiation like DiffServ [7] and
end-to-end mechanisms [8] can distinguishes flows with
different priorities. Flows with high priority get more share
than ones with low priority. But service differentiation
only provides flows with proportional throughput and is
unable to guarantee the flow completion time.

Issue 6 ZHANG Peng, et al. / DATCP: deadline-aware TCP for the commoditized data centers 53

In this paper, we propose a new transport protocol
named DATCP to provide deadline-aware service for the
commoditized data centers, which can be used as a flexible
method to schedule flows. DATCP dynamically adjusts
flow urgency based on the gap between desired rate and
actual throughput. High urgency flows would get more
bandwidth share. The urgency is increased every
round-trip time (RTT) until actual throughput is equal or
greater than desired rate so that the flow would meet
deadline. To avoid starving the important but not-urgent
flows, DATCP combines importance and urgency of flows
to calculate the precedence according to the
urgent/important matrix [9]. The importance is the same as
conventional priority and is due to what the flow is used
for. Therefore, the precedence of TCP flows can
dynamically be changed according to network situation.
When network load is too heavy, not all flows can meet
deadlines, a flow quenching method is presented which
makes low precedence flows quenched to allow other high
precedence flows to meet deadlines.

DATCP needs the applications get flow size at flow
initiation time. It is feasible in data centers. For example,
many web applications have knowledge of flow size in
advance. This holds for MapReduce. Even for application
where this condition does not hold, the application
designer can typically provide a good estimate for the
expected flow sizes. Moreover, DATCP only needs minor
modification to existing TCP and makes use of explicit
congestion notification (ECN) [10], a feature already
available in current commodity data center switches.
Deploying DATCP in datacenters has no effect on the
external traffic as connectivity to the external Internet is
typically managed through load balancers and application
proxies that effectively separate internal traffic from
external [6].

By extensive simulations, the performance of DATCP
was evaluated. Simulation results show that DATCP can
make flows meet deadlines effectively and without
starving the important but not-urgency flows. A scenario of
MapReduce was also considered to show how to schedule
flows using DATCP.

The remainder of this paper is organized as follows. In
Sect. 2 we introduce background and related works. The
DATCP algorithm is presented in Sect. 3. Sect. 4 provides
the evaluation results. Finally, Sect. 5 concludes the paper.

2 Background and related works

2.1 Benefits of deadline-aware

We take two examples in Ref. [3] to show benefits of
deadline-aware. The first one, two flows share a bottleneck
link and one of them has a tighter deadline than the other.
Today’s TCP tries to share link fairly and the flows would
finish at similar times, so only one flow meets the deadline,
as shown in Fig. 1(a). However, if flows are
deadline-aware and the deadlines are set to flows, flow 1
would get enough share to meet the deadline, and then
both of the two flows would meet the deadlines, as shown
if Fig. 1(b).

(a) Status quo

(b) Deadline aware

Fig. 1 Two flows with different deadlines

The second one, multiple flows share a bottleneck link
and have same deadline. Assume that network load is
heavy and network capacity is not enough to allow all the
flows to meet the deadline. With today’s TCP, as illustrated
in Fig. 2(a), all flows get their fair share and finish at
similar times and all of them would miss the deadline.
Given flows deadline-aware, if some flows are quenched,
there would be allow other flows to meet the deadline, as
shown in Fig. 2(b).

54 The Journal of China Universities of Posts and Telecommunications 2012

(a) Status quo

(b) Deadline aware (flow 2 is quenched)

Fig. 2 Multiple flows with the same deadline

2.2 Flows in MapReduce-like systems

MapReduce is a computing framework proposed by
Google for processing highly distributable problems across
huge datasets using a large number of computers [1]. There
are a lot of flows in Hadoop at each computing stage, such
as job initialization, data distributing, map phase, shuffle
phase, reduce phase and result aggregation. Fig. 3 presents
the dataflow of Hadoop [11]. Input data is divided into
splits, and a distinct map task is launched for each split.
Inside each map task, map stage applies a map function to
the input data, and spill stage stores map output on local
disks. In addition, a distinct reduce task is launched for
each partition of the map outputs. Inside each reduce task,
the copier and merge stages also called shuffle stage run in
a pipelined fashion, fetching the relevant partition over the
network and merging the fetched data respectively; after
that, the sort and reduce stages merge the reduce inputs
and apply the reduce function respectively.

The size of most of these flows can be known before
initiation. At job initialization, the JobTracker distributes
the job JAR package to the TaskTracker. The size of the
job JAR package is known in advance. For data
distribution of Hadoop distributed file system (HDFS) [11]
and Google file system (GFS) [12], block size is preset. At
shuffle step, since the reducers copy map outputs after the

map tasks have finished, the flow size is also known in
advance.

Fig. 3 Dataflow graph of the Hadoop

Map tasks within a job always have similar lengths
because they run the same function [13]. So job scheduler
can speculate finish time of maps. Flows of jobs which are
map up of few flows should be set shorter deadlines. To
reduce job completion time and increase utilization of
Hadoop cluster, flows deadlines should be set carefully.
Flows deadlines setting can be used for flows scheduling.
Therefore, DATCP provide a flexible method for Hadoop
to schedule flows.

2.3 Related works

There are some research works on data center transport
protocol. A hot problem of TCP in data centers is the incast
throughput collapse [14–15], where application throughput
drastically collapses when multiple senders simultaneously
send data to a receiver. But these works are
deadline-agnostic. Other works propose new data center
transport protocols [3,6]. DCTCP [6] aims to ensure low
latency for short flows and good utilization for long flows
by reducing switch buffer occupation meanwhile
minimizing buffer oscillation. Reducing the switch buffer
occupation can lower queuing time and benefit short flows
while minimizing the oscillation can maintain high

Issue 6 ZHANG Peng, et al. / DATCP: deadline-aware TCP for the commoditized data centers 55

throughput of links and do not affect the throughput of
long flows. However, DCTCP does not provide the
deadline-aware service and even has no service
differentiation. The work most related to ours is D3 [3]. D3
uses explicit rate control to apportion bandwidth according
to flow deadlines. Given a flow’s size and deadline, source
end hosts request desired rates to switches. The switches
assign and reserve allocated rates for the flows. However,
most data center switches do not support rate allocation
and reservation due to the trend of constructing data
centers with commodity servers and switches [16–18].
Unlike D3, DATCP proposed in this paper only needs
minor modification to existing TCP and makes use of a
feature already available in current commodity data center
switches.

3 The DATCP algorithm

The basic idea is that DATCP adjusts flow precedence
dynamically to maintain flow rate and then make flows
meet their deadlines. Flow rate is related to not only its
precedence but also the number and precedence of other
flows. This is because that flow precedence only brings
proportional throughput differentiation, i.e., flows receive
their weighted fair share of the network bandwidth.
Therefore, flow precedence should be adjusted
dynamically to let flow get the desired throughput.

3.1 Calculating precedence based on both urgency and
importance

Flow precedence is inspired by the urgent/important
matrix [9], which is a powerful way of thinking about
priority, as shown in Fig. 4.

Fig. 4 Urgent/Important matrix

Using it helps people overcome the natural tendency to
focus on urgent activities, so that you can keep clear
enough time to focus on what's really important. Similarly,
we define urgency and importance to flows. The urgency
of a flow, which is adjusted dynamically, reflects the gap

between its bandwidth demand and actual throughput. The
importance of a flow is up to its usage and what service it
belongs to. Then we calculate precedence based on both
urgency and importance. The precedence is similar to
conventional priority.

Algorithm 1 demonstrates the scheme of flow
precedence calculating. The reason why Ravg = Rlast in slow
start phase is that it can make Ravg converge quickly. Flow
urgency is adjusted dynamically according to the gap
between desired rate Rdesired and actual throughput Ravg.
When the actual throughput is smaller than the flow
demand, the urgency is increased to try to get more
capacity share. When the actual throughput is larger than
the flow demand, the urgency is decreased. To avoid too
large or negative urgency, maximum and minimum
urgency are set. Flow importance is preset according to its
usage and what service it belongs to. Setting importance
can avoid starving the important but not-urgent flows. We
calculate precedence P based on both importance and
urgency. The precedence P is also updated every window
of data (roughly one round trip time (RTT)).

Algorithm 1 Flow precedence calculating
Description: flow precedence is calculated based on

both urgency and importance. The importance is preset.
The urgency is adjusted dynamically according to the gap
between its desired rate and actual throughput.

Input:
flow size Vtotal, flow deadline Tdeadline, flow importance I.

Variable Definition:
P: flow precedence.
U: flow urgency.
Umax: the maximum flow urgency.
Umin: the minimum flow urgency.
Vrtt: data volume sent last RTT.
Vremain: remaining data volume.
Trtt: length of last RTT.
Tremian: remaining time before the deadline.
Tnow: current time.
Rlast: flow throughput of last RTT.
Ravg: present actual throughput.
Rdesired: flow bandwidth demand.
α: parameter for updating Ravg.
φ : proportion of importance during precedence calculation.
G: the maximum granularity of urgency adjusting.
g: the granularity of urgency adjusting

Initialization:
Vremain = Vtotal;

56 The Journal of China Universities of Posts and Telecommunications 2012

Tremian = Tdeadline – Tnow;
Algorithm:

 When receive every window of data (roughly one RTT)
 Vremain = Vremain – Vrtt;;
 Tremian = Tremian – Trtt;
 Rlast = Vrtt / Trtt;
 if (in slow start phase) then
 Ravg = Rlast;
 else if (in congestion avoidance phase) then
 Ravg =αRavg + (1–α)Rlast;
 end if
 Rdesired = Vremain / Tremian;
 g = abs(Rdesired – Ravg) / Ravg
 if (g > G) then
 g = G;
 if (Rdesired > Ravg) then
 U += g;
 if (U > Umax) then
 U = Umax;
 end if
 else then
 U –= g;
 if (U < Umin) then
 U = Umin;
 end if
 end if
 P =φI + (1–φ)U;

3.2 Adjusting congestion window according to given
precedence

The idea is that flows with varying precedence take
different response to network congestions. High
precedence flows should cut window responding to
congestion more mildly and low precedence flows more
severely. This can achieve proportional throughput
differentiation, e.g., throughput of a flow with precedence
2 is twice as a flow with precedence 1. In other words,
high precedence flows have higher proportion of the
capacity of the shared link than low precedence flows.
DATCP dynamically allocates bandwidth by per flow
according to the precedence not by per precedence.

As shown in Fig. 5, DATCP senders send packets to
receiver. If network congestion happens, the switches mark
the incoming packets. Then receivers echo the ACKs of
marked packet to sender, and then congestion is detected
by sender and sender take reaction according to its
precedence.

Fig. 5 The combination of DATCP and ECN

1) Detecting the network congestion
DATCP uses random early detection queue (RED) in

conjunction with ECN which is already available in
current commodity switches. RED/ECN monitors the
average queue size and marks incoming packets based on
statistical probabilities instead of dropping. DATCP use a
variant of RED which marks the incoming packets based
on instantaneous queue length instead of average queue
length, as shown in Fig. 6. As the senders could receive
marked ACKs during the first one or two RTTs to tame the
size of follow up bursts, this could prevent buffer
overflows. This is the same with DCTCP [6]. But the
difference between DATCP and DCTCP is that we set low
and high marking threshold different value. The benefit of
this is that we can speculate congestion degree more
accurately. In DCTCP, the low and high marking threshold
are equal. If the instantaneous queue length exceeds K, all
packets are marked and the congestion degree is hard to
calculate accurately.

Fig. 6 DATCP use a variant of RED: marking is based on the
instantaneous rather than average queue length

We do not change the ECN-support TCP receiver. Upon
receiving a marked packet, the TCP receiver echoes back
this congestion indication using the ECN-Echo flag in the
TCP header in a series of acknowledgements (ACKs)
packets until it receives confirmation from the sender that
the congestion notification has been received [10].

2) DATCP sender behavior
Standard TCP use additive increase multiplicative

decrease (AIMD) algorithm to adjust congestion window

Issue 6 ZHANG Peng, et al. / DATCP: deadline-aware TCP for the commoditized data centers 57

size. The AIMD (a, b) policy increases the congestion
window by a fixed amount a every round trip time. When
congestion is detected, the sender decreases the congestion
window by a multiplicative factor b. For standard TCP, a =
1, b = 0.5.

Flows with varying AIMD parameters take different
responses to network congestions to get different
throughput. DATCP does not change AIMD algorithm of
TCP except the multiplicative decrease factor b. High
precedence flows are set smaller b and low precedence
flows are set bigger b. The reason we choose the
multiplicative decrease factor b rather than the additive
increase amount a is that this can minimize the traffic burst.
Let’s take an example, sending a 1 500 B packet in 0.3 ms
RTT needs 40 Mbit/s bandwidth. Although smaller
increase mount a also means smaller traffic burst, a lot of
tinny packets would be generated and link utilization
would be affected.

3) Determining multiplicative factor b
DATCP adjusts the window decrease factor b to provide

throughput differentiation. Suppose there are two flows
competing for a bottleneck link. The maximum congestion
window sizes of the two flows are W1 and W2 respectively.
When congestion is detected, two flows decrease their
window by b1 and b2 respectively, as illustrated in Fig. 7.

Fig. 7 The window size of flows

The ratio of two flows throughput is the ratio of average
congestion window size.

()
()

1 1flow1

flow2 2 2

1 1

1 1

b WR
R b W

+ −⎡ ⎤⎣ ⎦=
+ −⎡ ⎤⎣ ⎦

 (1)

We assume that two flows get proportional throughput
differentiation. Let P1, P2 be the two flows precedence. So,

flow11

2 flow2

RP
P R

= (2)

Assume that two flows have identical RTTs Trtt,
()1 1

rtt

1 1
1

b W
T

− −⎡ ⎤⎣ ⎦= (3)

()2 2

rtt

1 1
1

b W
T

− −⎡ ⎤⎣ ⎦= (4)

We can get,
()
()

1 21

2 2 1

2
2

b bP
P b b

−
=

−
 (5)

For given P1 we set b1, and then for given P2 we can get
b2 according to the Eq. (5). Usually we set the precedence
of standard TCP to 1 and b to 0.5.

3.3 Flow quenching

When network load is too heavy, capacity available to
flows is not enough to allow all the flows complete before
deadlines, so some low precedence flows should be
quenched to make the remaining high precedence flows
meet the deadlines.

Algorithm 2 illustrates the scheme of flow quenching. If
actual throughput is smaller than bandwidth share, DATCP
tries to increase urgency to get higher Ravg. Гprofit�0 means
that flow cannot get more bandwidth share. If flows cannot
meet deadlines with the current Ravg and Гprofit�0, flows
should be quenched. In order to mitigate the throughput
instability, DATCP quenches flows when Гprofit�0 for
several times continuously. Moreover, flows should be
quenched with a certain probability. This could avoid flow
quenching synchronization. Low precedence flows are
quenched with a bigger probability. This makes sure as
many high precedence flows as possible meet the
deadlines. We set the quenching probability as pquench. The
quenching probability is related to the flow precedence.
DATCP should allow more flow with high precedence
complete first.

It is should be noted that flows could just be suspended
for a period of time rather than be killed. When network
load is light, the flows can continue to transmit data.
However, whether flows are killed or just suspended in
flow quenching depends on the application. For interactive
web applications, overtime flows should be quenched
because flows missing the critical deadlines are useless to
applications. But for MapReduce applications, the
deadlines are not critical and the computing tasks need all
the flows to complete, so overtime flows should be
suspended.

Algorithm 2 Flow quenching
Description: low precedence flows are quenched with a

bigger probability. This can make higher precedence flows

58 The Journal of China Universities of Posts and Telecommunications 2012

meet their deadlines.

Input:
flow size Vtotal, flow deadline Tdeadline, flow importance I.
ε: the flag identifies flows are killed or just suspended

Variable Definition:
P: flow precedence.
Pmax: the maximum flow precedence.
Ravg: present actual throughput.
R’avg: last actual throughput
Гprofit: the increase proportion of Ravg after the added urgency.
Rdesired: flow bandwidth demand
θ: the continuous times Гprofit � 0 after increase urgency.
pquench: the quenching probability.
Θ: the maximum θ.

Initialization:
θ = 0;

Algorithm:
 When receive every window of data (roughly one RTT)
 if (urgency is increased last RTT) then
 Гprofit = Ravg – avgR′ ;

 if (Гprofit � 0) then
 θ = θ + 1;
 if (θ � Θ) then
 pquench = 1 – P / Pmax;
 flow is quenched with pquench and whether is killed

according to ε;
 θ = 0;
 end if
 end if
 else then
 θ = 0;
 end if.

3.4 Discussion

Although above we let DATCP use ECN to detect
network congestion, DATCP can also be deployed as pure
end-based protocol and without any middle network
support. However, since the bandwidth-delay product is
small in data center networks, congestion window size of
each flow is usually small. If not using ECN, network
congestion is usually detected by packet losses rather than
duplicated ACKs [19]. This would take longer time to
detect congestion and affect the performance of DATCP.
Moreover, the idea of DATCP is also suitable to rate-based
TCP. The result of DATCP for rate-based congestion
control is more accurate than window-based congestion
control because it is difficult to maintain a rate in

window-based congestion control especially in data center
networks.

4 Evaluation

In this section, we perform extensive simulations with
the network simulator NS2 (http://www.isi.edu/nsnam/ns/)
to evaluate the performance of DATCP. A MapReduce
scenario is also considered to introduce how to schedule
flows using DATCP. The network model used in the
simulations is that multiple servers are connected to a
top-of-rack switch. The switch supports RED/ECN, an
active queue manage scheme already available in current
commodity switches.

4.1 Simulation parameters setting

We set simulation parameters as shown in Table 1.

Table 1 The simulation parameters
Parameters Value

Capacity of links 1 Gbit/s
Propagation delay of links 75 µs
Buffer size of each switch port 200 KB
Max_p of RED 1.0
Min_threshold of RED 80 KB
Max_threshold of RED 120 KB
Queue weight of RED 1.0
MinRTO 10 ms
Packet size 1 500 B
Maximum window 50 packets

The capacities of links are set to 1 Gbit/s and the buffer
size of each switch port is set to 200 KB. Both values are
typical in current data centers. Since the RTT of data
center network is very small, usually only hundreds of µs,
we set the minimum retransmission timeout (RTO) to 10
ms instead of the default 200 ms. 10 ms is a typical value
used in data center networks [6]. We set the queue weight
of RED to 1.0 and then packets marking are based on the
instantaneous queue length. Therefore the sender can
detect the congestion quickly.

In addition, the precedence of standard TCP is set to 1,
and a = 1, b = 0.5. According to Eq. (5), we can get the
window decrease factor b for other precedence flows. For
all flows, we set the window increase factor a to 1. This
could limit the traffic burst. Moreover, we set the average
throughput calculate factor a to 0.1.

4.2 Basic of DATCP algorithm

We will analyze the basic of DATCP algorithm in this
subsection.

Deadline-aware: the deadline-aware feature of DATCP

Issue 6 ZHANG Peng, et al. / DATCP: deadline-aware TCP for the commoditized data centers 59

under different deadlines is evaluated. We set up following
simulation scenario: there are six flows competing for a
1 Gbit/s link, and three of them have deadlines and the
others have no deadline. The size of the flows with a
deadline is 100 MB and others have infinite data to send.
The throughput of flows is computed at 0.1 s interval. We
set the parameter φ to 0, i.e., only urgency is considered in
this subsection. The deadlines are set to 4 s, 3 s
respectively and the scenario of no deadline is also
presented. The throughput of the flow under different
deadline is shown in Fig. 8. As we can see from the figure,
DATCP can meet the deadlines effectively. The throughput
of background flows are also shown in the figure. The
throughput of flows within the same urgency is almost
identical so the fairness of DATCP is good. This holds for
flows with no deadline.

(a) No deadline

(b) Deadline is 4 s

(c) Deadline is 3 s

Fig. 8 The throughput of flows with different deadlines

Convergence: to show that DATCP flows quickly
converge to their weighted fair rate, we perform a
simulation similar to above. G is set to 0.05. We first start
three deadline-agnostic flows, and then we sequentially
start three deadline-aware flows, spaced by 1 s. The

deadlines are all set to 4s. The time series depicting the
overall flow throughput is shown in Fig. 9. As DATCP
flows come and go, they quickly converge to their
weighted fair rate.

Fig. 9 The convergence test of DATCP

Combining importance and urgency: next the effects of
importance are evaluated. We still use the simulation
scenario above except importance of one background flow is
set to 1, 2, 3 respectively. The precedence is calculated by
both the importance and urgency of the flows and the
parameter φ is set to 0.5. As we can see from the Fig. 10, the
background flow with higher importance got more link share.
This can avoid starving important but not-urgent flows.

Fig. 10 The throughput of flows with different importance

Flow quenching: we used another simulation scenario.
There are 4 flows sized 200 MB with same deadline and
same importance. The deadline is set to 6 s. If no flow is
quenched, and then all flow cannot finish before deadline,
as illustrated in the Fig. 11(a). Fig. 11(b) plots the result
that DATCP quenched one flow so that other 3 flows meet
the deadline.

Conventional TCP with priority: TCP with priority can
give some flow more bandwidth share. But the share is
proportional. We simulated 3 TCP flows with priority is 3
and some background flows share a 1 Gbit/s bottleneck link.
The number of background flow is set to 3 and 6
respectively; the throughput of TCP flows is shown in
Fig. 12. As we can see, same priority leads to different

60 The Journal of China Universities of Posts and Telecommunications 2012

completion time under different background flow number.
That is, TCP with priority could not make sure flows meet
deadlines.

(a) No flow quenching

(b) With flow quenching

Fig. 11 The effect of flow quenching

(a) 3 background flows

(b) 6 background flows

Fig. 12 Flow throughput of conventional TCP with priority
(priority is 3)

4.3 Generated traffic scenario

In this scenario, we evaluate the performance of our
design under the generated traffic. Three deadline-agnostic
background flows which have infinite data to send are first
generated. We then generate three deadline-ware flows
every ten seconds. The flow size is uniformly distributed
on 10 MB~100 MB. The deadlines are also on uniform
distribution and three kinds of deadlines are evaluated: lax,
moderate and tight. We compare DATCP with TCP and D3
in the simulation. The ratio of flows meeting deadlines is
shown in Fig. 13. As we can see, DATCP outperforms TCP
under all three kinds of deadlines. Though D3 has similar
results with DATCP, it needs new switches and new
protocols. Unlike D3, DATCP only needs minor
modification to existing TCP and makes use of a feature
already available in current commodity data center
switches.

Fig. 13 The generated traffic scenario

4.4 MapReduce scenario

We consider a simple MapReduce scenario to show that
DATCP could be used as a flow scheduling method.
Suppose that there are two jobs ongoing. Job A is made up
of four maps and a reduce while job B consists of two
maps and a reduce. Jobs are scheduled by fair share
Scheduler. Both job A and job B have two maps completed.
Job B only has a reduce left but job A has two maps and a
reduce left. Reduce tasks are going to copy the output of
the maps. We suppose that the two reduce tasks are located
in the same server. So there are four flows sharing the
downlink of the server. Obviously, the two flows of job B
are more urgent than the other two flows of job A because
job B will finish once the two flows complete. After job B
completes, the resource will be released and can be used
for other jobs. Then the utilization of MapReduce cluster
will be increased. Therefore, flows of job B should be

Issue 6 ZHANG Peng, et al. / DATCP: deadline-aware TCP for the commoditized data centers 61

scheduled to complete as quickly as possible.
Next we will show how to schedule flows using DATCP.

There are four parameters needed: flow size, flow deadline,
flow importance and whether flows are killed or just
suspended in flow quenching. We set the size of every map
output to 100 MB and the length of all tasks to 5 s. In
order to let flows of job B complete quickly, we set the
deadline of flows of job B to 2 s and flows of job A to 5 s
which is the same as the task length. All flows have no
importance and flows are suspended in flow quenching.
The completion times of two jobs with DATCP and TCP
are evaluated. As shown in the Fig. 14, the completion
time of job B with TCP is 3.2 s and with DATCP is 2 s
while the completion of job A is not affected.

Fig. 14 The MapReduce scenario

From above we can see that DATCP can be used for
flow scheduling and a good flow scheduling algorithm can
improve the application performance greatly. But the
strategy flow scheduling is out of the scope of this paper
and we will study it in our future work.

5 Conclusions

In this paper, we present DATCP, a new transport
protocol for providing deadline-aware transmission service
for the commoditized data centers. DATCP combines flow
urgency and importance to calculate precedence. And flow
urgency is dynamically adjusted according to the gap
between desired rate and actual throughput. DATCP only
needs minor modification to existing TCP and makes use
of ECN, a feature already available in current commodity
switches. We evaluate DATCP via extensive simulations.
Our results suggest that DATCP can make flows meet
deadlines effectively without starving the important but
not-urgency flows.

DATCP provides a flexible method to schedule flows.
The strategy of flow scheduling is related to specific
application and a efficient flow scheduling algorithm can

improve the application performance greatly. We will
study the flow scheduling using DATCP in future works.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (61002011), the Open Fund of the State
Key Laboratory of Software Development Environment
(SKLSDE-2009KF-2-08), the National Basic Research Program of
China (2009CB320505), the Hi-Tech Research and Development
Program of China (2011AA01A102).

References

1. Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. Proceedings of the 6th USENIX Symposium on Operating System
Design and Implementation (OSDI’04), Dec 6−8, 2004, San Francisco, CA,
USA. Berkeley, CA, USA: USENIX Association, 2004: 13p

2. Benson T, Akella A, Maltz D A. Network traffic characteristics of data
centers in the wild. Proceedings of the 10th Internet Measurement
Conference (IMC’10), Nov 1−3, 2010, Melbourne, Australia. New York,
NY, USA: ACM, 2010: 267−280

3. Wilson C, Ballani H, Karagiannis T, et al. Better never than late: meeting
deadlines in datacenter networks. Proceedings of the ACM SIGCOMM
2011 Conference (SIGCOMM’11), Aug 15−19, 2011, Toronto, Canada.
New York, NY, USA: ACM, 2011: 50−61

4. Shieh A, Kandula S, Greenberg A, et al. Sharing the data center network.
Proceedings of the 8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’11), Mar 30−Apr 1, 2011, Boston, MA, USA.
Berkeley, CA, USA: USENIX Association, 2011: 23

5. Benson T, Anand A, Akella A, et al. Understanding datacenter traffic
characteristics. Proceedings of the 1st ACM Workshop on Research on
enterprise networking (WREN’09), Aug 21, 2009, Barcelona, Spain. New
York, NY, USA, 2009: 65−72

6. Alizadeh M, Greenberg A, Maltz D, et al. Data center TCP (DCTCP).
Proceedings of the ACM SIGCOMM 2010 Conference (SIGCOMM’10),
Aug 30−Sep 3, 2010, New Delhi, India. New York, NY, USA, 2010: 63−74

7. Blake S, Black D, Carlson M, et al. An architecture for differentiated
services. IETF RFC 2475.1998

8. Nandagopal T, Lee K W, Li J R, et al. Scalable service differentiation using
purely end-to-end mechanisms: features and limitations. Proceedings of the
8th IEEE International Workshop on Quality of Service (IWQOS’00), Jun
5−7, 2000, Pittsburgh, PA, USA. Los Alamitos, CA, USA: IEEE Computer
Society, 2000: 813−833

9. Covey R S. The 7 habits of highly effective people. Revised edition.
Mankato, MN, USA: Free Press, 2004

10. Ramakrishnan K, Floyd S, Black D. The addition of explicit congestion
notification (ECN) to IP. IETF RFC 3168. 2001.

11. White T. Hadoop: the definitive guide. 2nd edition. Sebastopol , CA, USA:
O’Reilly Media / Yahoo Press, 2010

12. Ghemawat S, Gobioff H, Leung S T. The Google file system. Proceedings
of the 19th ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’03), Oct 19−22, 2003, Bolton Landing, NY, USA. New York, NY,
USA: ACM, 2003: 29−43

13. Zaharia M, Borthakur D, Sarma J S, et al. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.
Proceedings of the 5th European conference on Computer systems
(EuroSys’10), Apr 13−16, 2010, Paris, France. New York, NY, USA: ACM,
2010: 265−278

62 The Journal of China Universities of Posts and Telecommunications 2012

14. Vasudevan V, Phanishayee A, Shah H, et al. Safe and effective fine-grained
TCP retransmissions for datacenter communication. Proceedings of the
ACM SIGCOMM 2009 Conference on Data Communication
(SIGCOMM’09), Aug 17−21, 2009, Barcelona, Spain. New York, NY,
USA: ACM, 2009: 303−314

15. Chen Y P, Griffith R, Liu J D, et al. Understanding TCP incast throughput
collapse in datacenter networks. Proceedings of the 1st ACM Workshop on
Research on Enterprise Networking (WREN’09), Aug 21, 2009, Barcelona,
Spain. New York, NY, USA: ACM, 2009: 10p

16. Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center
network architecture. Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication (SIGCOMM’08), Aug 17−22, 2008,
Seattle, WA, USA. New York, NY, USA: ACM, 2008: 63−74

17. Greenberg A, Lahiri P, Maltz D A, et al. Towards a next generation data
center architecture: scalability and commoditization. Proceedings of the
ACM Workshop on Programmable Routers for Extensible Services of
Tomorrow (PRESTO’08), Aug 17−22, 2008, Seattle, WA, USA. New York,
NY, USA: ACM, 2008: 57−62

18. Guo C X, Wu H T, Tan K, et al. Dcell: a scalable and fault-tolerant network
structure for data centers. Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication (SIGCOMM’08), Aug 17−22, 2008,
Seattle, WA, USA. New York, NY, USA: ACM, 2008: 75−86

19. Zhang P, Wang H B, Cheng S D. Shrinking MTU to improve the TCP
fairness in data center networks. Proceedings of the 3rd IEEE International
Conference on Communication Software and Networks (ICCSN’11), May
27−29, 2011, Xi’an, China. Piscataway, NJ, USA: IEEE, 2011: 106−111

(Editor: WANG Xu-ying)

From p. 28
5. Saad W, Zhu H, Debbah M. Coalitional game theory for communication

networks. IEEE Signal Processing Magazine , 2009, 26(5): 77−97
6. Zhu H, Zhu J. Fair multiuser channel allocation for OFDMA networks using

Nash bargaining solutions and coalitions. IEEE Transactions on Wireless
Communications, 2005, 53(8): 1366−1376

7. Hering P J J, van der Laan G, Talman D. Cooperative game in graph
structure. No 2000-90. Tilburg, Netherlands: Center for Economic Research,
Tilburg University, 2000

8. Nguyen T D, Han Y. A proportional fairness algorithm with QoS provision
in downlink OFDMA systems. IEEE Communications, 2006, 10(11):
760−762

(Editor: WANG Xu-ying)

