
SmartShuffle: Managing Online Virtual Machine Shuffle in Virtualized Data
Centers

Peng Zhang, Hongbo Wang, Junbo li, Jiankang Dong, Yangyang Li, Shiduan Cheng

State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications, Beijing 100876, China

Email: {zhp, hbwang, lijunbo, dongjk, yyli, chsd}@bupt.edu.cn

Abstract—Virtual machine (VM) live migration provides
spatial flexibility by rearranging VM placement (i.e., VM
shuffle) in several scenarios, including server consolidation,
power consumption saving, fault tolerance, QoS management
and network congestion resolving. However, VM live migration
would consume scarce bandwidth and even cause network
congestion. Since the bandwidth used by VM migration is
usually the same as the services running in the VM, migration
traffic would dominate network path and affect other
application traffic as the traffic of a VM migration is usually
several GBs. It gets worse in VM shuffle where plenty of VMs
are needed to be moved. In this paper, we explore the
opportunity to manage online VM shuffle and minimize the
impact to data center networks. An efficient online VM shuffle
scheduling method named SmartShuffle is presented.
SmartShuffle tries to minimize the VM shuffle duration by
coordinating VM migration in a proper scheduling order. VMs
benefiting others maximally are migrated preferentially. We
employ the simulated annealing algorithm to search for a
solution for SmartShuffle. Our evaluation shows that
SmartShuffle decreases the shuffle duration dramatically.

Keywords- cloud computing; virtualized datacenter; virtual
machine live migration; virtual machine shuffle; scheduling

I. INTRODUCTION
Virtualization is a technique to run several virtual

machines (VMs) simultaneously on one physical server. It
can offer many benefits, including application isolation,
resource sharing, fault tolerance, portability and cost
efficiency [1]. With its potential to reduce capital expenses
and energy costs, Virtualization has become an indispensable
practice in the design and operation of modern data centers.
Both cloud providers and enterprises are looking to gain
economical revenues from underutilized IT resources.

Another advantage of virtualization is VM live migration
which allows VMs to be moved transparently from one
physical server to another, while the VMs are continuously
running. It provides a new spatial flexibility by rearranging
VM placement (i.e., VM shuffle) on the fly in several
scenarios, including power consumption saving, server
consolidation, fault tolerance, QoS management and network
congestion resolving [2]-[9].

Although VM live migration is widely used, it does not
come along without any negative impact, but consumes
scarce bandwidth and even causes network congestion. Since
the bandwidth used by VM migration is the same as the
services running in the VM, migration traffic would
dominate network path and affect other application traffic as

the traffic of a VM migration is usually several GBs. It gets
worse in VM shuffle where plenty of VMs are needed to be
moved. And Results in [9] suggest that 5-10% of VMs in the
data center are needed to be moved to resolve network
congestion every round. Therefore, managing VM shuffle is
an important issue. However, few works has focused on it.

In this paper, we explore the opportunity to manage online
VM shuffle and try to minimize its impact to data center
networks. We choose to minimize the VM shuffle duration
time by coordinating a proper scheduling sequence for VM
migration. The duration is the total elapsed time to move all
VMs to their target hosts. Shorter VM shuffle duration
means smaller impact to data center network because of less
occupation of scarce bandwidth.

We formulate VM shuffle scheduling issue as an
optimization problem, which is shown to be a variation of
the NP-hard Travelling Salesman Problem (TSP). We
therefore design SmartShuffle, an efficient online VM shuffle
scheduling method. We employ the simulated annealing
algorithm to search for a solution for SmartShuffle.

The basic idea of SmartShuffle is the VMs benefiting
others maximally should be migrated preferentially. Because
the VM shuffle duration is not only related to VMs to be
moved, but also the VM scheduling order. Different with
single VM, VMs in the same shuffle probably interact with
each other. Once a VM is moved, the traffic will be moved
from the source physical server to the target physical server.
The traffic of physical links would be changed. Then the left
VMs migration may be benefited. Then the VM shuffle
duration time will be reduced.

The remainder of this paper is organized as follows. In
Section II we introduce related works. The SmartShuffle
design is presented in Section III, including the motivation,
the problem formulation and the SmartShuffle method. We
evaluate our design using a discrete event simulator in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

A. VM Live Migration
Live migration allows VMs to be moved transparently

from one physical server to another, while the VMs are not
stopped. Virtualization use pre-copy [10] to enable VM live
migration. Pre-copy consists of the following two phases:

(1) Pre-copy phase.
At this stage, VM memory is iteratively copied from the

source to the target server while the VM continues to run. It
starts with transferring all active memory. Then pages dirtied

2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops

978-0-7695-5023-7/13 $25.00 © 2013 IEEE

DOI 10.1109/ICDCSW.2013.51

113

have to be re-sent in an additional round to ensure memory
consistency.

There are three pre-copy stop conditions and when any
one of them is met the pre-copy phase is stop: a) the num
number of pre-copy cycles exceeds the pre-defined threshold
(thn n�). b) The total amount of memory that has already
been transmitted exceeds a pre-defined threshold (thv v�). c)
The number of pages dirtied in the previous round falls
below a pre-defined threshold (thp p�).

(2)Stop-and-copy phase. At this stage, the hypervisor
suspends the VM to stop page dirtying and copies the
remaining dirty pages as well as the state of the CPU
registers to the destination server. After the migration
process is completed, the hypervisor on the target server
resumes the VM.

B. VM Placement & Online VM Shuffle
Recently, several studies leverage VM placement to

optimize power consumption saving, server consolidation,
fault tolerance and QoS management [2]-[5]. However, all of
these works do not take into account the network resource. In
[6], Meng et al. presents an approach of manipulating VM
placement to localize large chunks of traffic and thus reduce
network load. In [7], Shrivastava et al. propose an efficient
mechanism for balancing load of physical machines while
minimize the network traffic inside data centers. In [8], Jiang
et al. combine VM placement and routing and get the
benefits of the joint design. However, all the above work
only rearranges VM placement but not consider the cost of
multiple VM migration which cannot be ignored.

The most related work to ours is VirtualKnotter [9].
VirtualKnotter focuses on controllable migration traffic
while minimizing continuous congestion by enabling online
VM placement at the granularity of tens minutes. However,
VirtualKnotter just limit the number of moved VMs but do
not consider the process of VM shuffle. While VM shuffle is
what this paper focuses on and we try to find out the best
VM scheduling order to minimize the impact of VM shuffle
to data center network.

III. SMARTSHUFFLE DESIGN
In this section, we present SmartShuffle, a heuristic

method to the online VM shuffle scheduling problem which
tries to shorten VM movement duration by calculating a
proper VM sequence. We first introduce the idea behind
SmartShuffle then formulate the VM shuffle scheduling
problem using optimization language and analyze its
complexity. Finally, the simulated annealing algorithm is
employed to search for a solution.

A. Motivation
VMs may compete for link bandwidth when they are

migrated, so it is better to schedule VMs sequentially instead
of migrating them simultaneously. VMs in the same shuffle
probably interact with each other. Once a VM is moved, the
traffic will be moved from the source physical server to the
target physical server. The traffic of physical links would be

Figure 1. A simple scenario of SmartShuffle (both VM1 and VM2 will be

moved to Server C)

changed. Then the left VMs migration may be affected.
The basic idea of SmartShuffle is VMs benefiting others

more should be migrated preferentially. Then the latter VMs
will get more bandwidth for migration. So the VM shuffle
duration will be reduced. It should be noted that the benefit
may be negative. But the idea of SmartShuffle holds true
since the bigger “negative benefit” (i.e., negative gain)
brings less impact on others.

Before introducing SmartShuffle method, we present a
simple example to point the effectiveness of SmartShuffle, as
shown in Fig.1. There are two VMs needed to be moved.
VM1 and VM2 are located on server A and server B
respectively and both of them will be migrated to server C.
There is application traffic among VMs. VM1 sends data at
200Mbps to VM3 and VM2 also sends data at 400Mbps to
VM3. The capacity of all the links is 1 Gbps. It is easily seen
that the links among switches is the bottleneck for VM
migration and the maximum available bandwidth for
migration is 400Mbps.

We assume that both VMs are identical. The memory size
and dirty page rate are 2GB and 50Mbps respectively. And
all migration lasts five pre-copy cycles. If both VMs are
moved simultaneously, the migration rate of two VMs is
200Mbps under the assumption that the available bandwidth
is divided fairly. So the migration time of two VMs is 106.6s
and the shuffle duration is 106.6s. If VM1 is scheduled
firstly, the migration time of VM1 is 45.7s. After VM1
migrating, the available bandwidth of bottleneck link is
increased to 600Mbps. So the migration time of VM2 is
29.1s. The sum is 74.8s and is reduced by 29.8% to
simultaneously moving. In the same way, if VM2 is moved
first, the migration time of VM2 is also 45.7s. After VM2
migrating, the available bandwidth of bottleneck link is
increased to 800Mbps. So the migration time of VM2 is
21.3s. The sum is 67s and is reduced by 37.6% to
simultaneously moving and reduced by 10.4% to VM1 first.
As we can see from this example, the bandwidth gain of
VM2 is bigger than VM1, so VM2 migration benefits the
other VM more and should be scheduled preferentially.

B. Problem Formulation
In this subsection, we formulate the VM shuffle

scheduling problem using optimization language and analyze
its complexity.

114

TABLE I. KEY NOTATION AND ITS MEANING

Symbol Description

�� Current VM placement. �����	
���	������ indicates
whether VM i is located on server s.

� Target VM placement.
� The VM set will be migrated from ���������
� Network topology
�� The bandwidth capacity of link l

�
Network routing. A binary-value function Ps,d(l), meaning
whether the traffic path from server s to d traverses
through link l.

� VM traffic matrix. Mi,j denotes the traffic volume from VM
i to VM j.

�� Migration rate of Vi
�� Memory size of Vi
�� Dirty page rate of Vi
n The number of pre-copy cycles in a VM migration
� ! The first pre-copy cycle threshold of pre-copy cycles

" ! The second pre-copy cycle threshold of the total amount
transmitted data

! The third pre-copy cycle threshold of pages dirtied in the
previous round

$� The migration time of Vi
% The scheduling VM sequence in VM shuffle
& The VM shuffle duration time

Let the current VM placement in the data center be

represented by �' and the optimized VM placement by �.
Let � be the set of VMs to be migrated in the shuffle.

We define ���� as

,

1, if is placed on server
0, otherwise

i
i s

V s
X

�
� �
�

.

���� is a binary value indicating whether VM (is located on
server).

Then we can get � and the migration sources and the
targets from �' and �.That is,

, ,{ | { | ' 1}}i n s n sV V i n X X� � 	 � .
Hence, the following constraints must be satisfied:

, 1, ,i s i
s

X i V V�
 �� . (1)

This equation dictates that each VM must be placed on at
most one physical server. The same is hold for �����.

Next, we assume data center is connected with a
hierarchical structure G, such as multi-root tree, which is
mostly used currently. We further assume a deterministic
routing P is applied in data center network. We denote the
network routing by a binary-value function Ps,d(l), meaning
whether the traffic path from server s to d traverses through
link l. And l is a physical link between two switches.

We let the traffic matrix among VMs represented by M.
Mi,j denotes the traffic volume from VM i to VM j. we
assume the Mi,j for a certain period of time is stable. The
bandwidth capacity of link l is Cl. When Vi is migrated from
server s to server d with a rate ��, the following constraints
must be satisfied:

, , , ,
,

() ()s d i s i j i j d l
i j

P l X M B X C� � . (2)

Furthermore, we analyze the migration time of a single
VM. Our analysis is according to [11]. But our pre-copy stop
condition is based on XEN [14] and analysis of [11] is based
on VMware vMotion [15]. The memory size of �� is denoted
by �� and the page dirty rate is by ��. Assume that pre-copy
technique is used in VM live migration, so there are n pre-
copy cycles and one final stop-copy cycle. In the first cycle,
the migration traffic equals to the entire memory size �� and
takes time ��*�� . During that time, ����*�� amount of
memory becomes dirty, and hence, the second cycle results
in ��+��*��,

- amount of traffic. So the .-th cycle will result
in ��+��*��,

/ for . 0 1.
The total traffic generated by migration VM �� , including

n pre-copy and one stop-and copy phases, is
1

1

0

1 (/)
(/)

1 /

nkn i i
i i i ik

i i

R B
D R B D

R B

�
�

�

	
�

	� .

So the migration time $� of �� is,
11 (/)n

i i
i i

i i

R B
t D

B R

�	
�

	
. (3)

Next we will analyze the actual pre-copy cycles n.
Because of the pre-copy stopping conditions, the actual pre-
copy cycles may smaller than the pre-defined threshold thn .
From the first pre-copy stopping condition, we have

thn n� .
From the second pre-copy stopping condition, we have

11 (/)
1 /

n
i i

i th
i i

R B
D v

R B

�	
�

	
,

Where thv is the pre-defined threshold of the total amount
transmitted data, then

/log 1 (1)
i i

th i
R B

i i

v R
n

D B
� 	 	 ,

so /log 1 (1)
i i

th i
R B

i i

v R
n

D B
� �

� 	 	� �
� �

.

From the third pre-copy stopping condition, we have

()ni
i th

i

R
D p

B
� ,

where thp is the pre-defined threshold of pages dirtied in the
previous round, then

/log
i i

th
R B

i

p
n

D
� ,

so /log
i i

th
R B

i

p
n

D
� �

� � �
� �

.

Thus, from the above three conditions, the number of pre-
copy n is

/ /min , log 1 (1) , log
i i i i

th i th
th R B R B

i i i

v R p
n n

D B D
� �� � � �

� 	 	� �� � � �� �� � � �� �
. (4)

115

Eq.(3) and Eq.(4) dictates that $� is closely related to
available bandwidth ��. But �� is variable because once any
VM is moved, the available bandwidth of whole data center
networks will be updated.

Finally, VMs are moved according to the scheduling
sequence and ones in front of sequence are migrated
preferentially. It does not mean VMs are moved one by one,
but are moved in parallel as long as there is enough available
bandwidth. VM scheduled preferentially uses as much as
available bandwidth for migration. If there is available
bandwidth left, the next VM in the queue is moved then
available bandwidth is updated. When a VM migration
completes, the VMs being moved should be updated first in
order to get more bandwidth for migration. Then VMs in the
sequence is scheduled if there is available bandwidth left.

We let T be VM shuffle duration time, i.e., the time of the
last VM completes migration. T is a function of Q so we let
T(Q) be the function. Now the optimization framework is
defined as:

 ()minimize T Q . (5)
This equation tries to minimize the VM shuffle duration time
by scheduling VMs migration in the proper sequence Q.

Complexity analysis: The above optimization problem can
be seen as a job scheduling problem. The data center
network is the “machine” and each VM migration is a “job”.
It is equivalent to the Travelling Salesman Problem (TSP)
which is a known NP-hard problem in combinatorial
optimization studied in operations research and theoretical
computer science [13].

Different with classic TSP problem where the distance
between cities is known, the “distance” of VM shuffle
optimization problem is dynamic because those VMs in the
same shuffle interact with each other. Once a VM is moved,
the traffic will be moved from the source physical server to
the target physical server. The traffic of physical links would
be changed. Then the left VMs migration may be affected.
So this problem is more complicated than classic NP-hard
TSP problem. Therefore, we resort to an intuitive heuristic
approach which is described in next section.

C. SmartShuffle Method
In this subsection, we present SmartShuffle, a heuristic

method to the online VM shuffle scheduling problem which
tries to shorten VM movement duration by calculating a
proper VM sequence.

We have shown that the problem is inherently NP-hard
and no efficient exact solution can scale to the size of a
typical VM shuffle. Therefore, we resort to an intuitive
heuristic approach. We employ the simulated annealing
algorithm to search for a solution on SmartShuffle. The
simulated annealing algorithm is known efficient in
searching in an immense solution space.

The detail procedure of simulated annealing for
SmartShuffle is shown in Algorithm 1. We first get the VM
set � needed to be moved. Then a random combination of �
is generated as the initial solution. The VM shuffle duration
time & is the “energy” and the function shuffle_time()
calculates and returns the VM shuffle duration time of a

Algorithm 1: Simulated Annealing for SmartShuffle
Require:
 ��, �, �, �, �, �, �
Algorithm:

, ,{ | { | ' 1}}i n s n sV V i n X X� � 	 �
%�2� a random combination of �
%345, %67� %�2�
&345, &67� shuffle_time(%�2�)

 8 89:;
while 8 < = do

%27> neighbor(%345)
&27> shuffle_time(%27>);
if calc_pro(&345, &27>, 8) > rand() then

 %345 %27>
 &345 &27>

end if
if �&27> ? &67� then

 %67� %27>
 &67� &27>

end if
 8 8 @ 1
end while
return %67� , &67�

given VM sequence. Specifically, VMs are moved according
to the scheduling sequence and ones in front of the sequence
are migrated preferentially. If there is available bandwidth
left, the next VM in the queue is moved and available
bandwidth is updated. When a VM migration completes, the
VMs being moved should be updated first in order to get
more bandwidth for migration. Finally, the time of the last
VM completes its migration is returned.

The function neighbor() swaps a random VM pair in a
given VM sequence. In each iteration, a neighboring state is
generated. Then moving to a neighboring state with a certain
acceptance probability which is got from the function
calc_pro(), which is defined as

() /

1, if
_ (, ,)

, otherwisecur new

new cur
cur new T T K

T T
calc pro T T K

e 	

���� �
��

 (5)

The function calc_proc() computes the acceptance
probability based on the shuffle duration time of current and
neighboring VM sequence as well as current temperature 8.
This function lets the probability of accepting a move to
worse sequence decreases as the temperature is decreased in
each iteration.

IV. EVALUATION
In this section, we evaluate the performance of

SmartShuffle by conducting simulation experiments. In order
to simulate a VM migration accurately, we write a discrete
event simulator using C++. The whole migration process can
be simulated as events, including migration start, the n-th
pre-copy cycle, stop-and-copy and migration completion.

116

Moreover, the dynamical change of available bandwidth
caused by VM migration start and completion is also
simulated as events.

A. Simulation Setup
The physical topology is a three-level tree with an

oversubscription ratio of 4:1. Edge to aggregation is 2:1 and
aggregation layer to core is 2:1. From top to down, a core
switch connects four aggregation switches with a 4Gbps link
respectively. Then an aggregation switch connects four edge
switches with a 2Gbps link respectively. An edge switch
connects 4 physical servers with a 1Gbps link respectively.
Every physical server hosts 4 VMs. So there are 64 physical
servers and 256 VMs.

It is reasonable to take multi-root tree as single-root one.
This is because that to take advantage of the path diversity in
multi-rooted trees, data centers spread outgoing traffic to or
from any host as evenly as possible among all the core
switches. Moreover, protocols like Multipath TCP [12] offer
the ability to use all possible paths in a single data transfer.

Current VM placement �� and target VM placement � are
generated randomly. The number of VMs to be moved is set
to 10, 20, 30, 40, 50 and 60 respectively. VM memory size is
uniformly distributed on the interval from 2 to 8 GB. The
dirty page rate is related to the application offered by the VM
and is assumed to uniformly distributed on the interval from
0 to 100 Mbps. Pre-copy parameters are set according to the
default values of XEN [14]. Pre-copy cycle threshold is set
to 30. The transmitted data threshold is set to thrice memory
size. The minimum dirty pages threshold is set to 200KB.

B. Evaluation Results
We evaluate the performance of SmartShuffle under two

different traffic patterns: 1) global traffic pattern, in which
each VM communicates with every other with the same
probability; 2) partitioned traffic patter, in which VMs form
isolated partitions, and only VMs within the same partition
communicate with each other with the same probability. The
communication rate between VMs is randomly generated
following an exponential distribution. This is reasonable
since the number of mice flows are much more than elephant
flows in a typical data center.

We conduct simulation experiments to compare results of
SmartShuffle to Random. In Random, VMs are scheduled to
migrate based on a randomly generated order. The simulated
annealing for SmartShuffle is iterated about 100000 cycles.
We also perform Random 10000 times and evaluate the
mean result.

1) Global Traffic Pattern

In this traffic pattern, every VM sends to other 0 to 4 VMs
which are chosen randomly from all the VMs except itself.
The rate follows an exponential distribution with a mean of
30 Mbps.

Fig.2 shows the shuffle duration time results for the
simulation experiments. As shown in the figure, the
SmartShuffle outperforms Random significantly on the
shuffle duration. The shuffle duration of SmartShuffle on
average is 38.3% smaller than Random, as shown in Fig.3.

10 VMs 20 VMs 30 VMs 40 VMs 50 VMs 60 VMs
0

200

400

600

800

1000

V
M

 S
hu

ffl
e

D
ur

at
io

n
(s

)

Number of VMs to be migrated

 SmartShuffle
 Random

Figure 2. The evaluation results on shuffle duration

10 VMs 20 VMs 30 VMs 40 VMs 50 VMs 60 VMs
0

10

20

30

40

50

60

V
M

 S
hu

ffl
e

D
ur

at
io

n
R

ed
uc

tio
n

(%
)

Number of VMs to be migrated

 SmartShuffle vs. Random

Figure 3. The normalized reduction of VM shuffle duration

10 VMs 20 VMs 30 VMs 40 VMs 50 VMs 60 VMs
0

100

200

300

400

To
ta

l M
ig

ra
tio

n
Tr

af
fic

 (G
B

)

Number of VMs to be migrated

 SmartShuffle
 Random

Figure 4. The total migration traffic in the VM shuffle

Additionally, the performance of SmartShuffle gets better
when the number of VM to be moved is bigger.

Fig.4 depicts the total migration traffic in the shuffle. As
shown in the figure, the total migration of both SmartShuffle
and Random are almost identical. In other word,
SmartShuffle gets better improvement while cause very little
extra migration traffic.

2) Partitioned Traffic Pattern

In this traffic pattern, VMs are partitioned into 8 groups.
Every VM also sends to other 0 to 4 VMs. But only VMs
within the same partition communicate with each other and
the target VMs are chosen randomly from the same isolated
partition. The rate also follows an exponential distribution
with a mean of 30 Mbps.

117

10 VMs 20 VMs 30 VMs 40 VMs 50 VMs 60 VMs
0

200

400

600

800

1000

V
M

 S
hu

ffl
e

D
ur

at
io

n
(s

)

Number of VMs to be migrated

 SmartShuffle
 Random

Figure 5. The evaluation results on shuffle duration

10 VMs 20 VMs 30 VMs 40 VMs 50 VMs 60 VMs
0

10

20

30

40

50

60

VM
 S

hu
ffl

e
D

ur
at

io
n

R
ed

uc
tio

n
(%

)

Number of VMs to be migrated

 SmartShuffle vs. Random

Figure 6. The normalized reduction of VM shuffle duration

10 VMs 20 VMs 30 VMs 40 VMs 50 VMs 60 VMs
0

100

200

300

400

To
ta

l M
ig

ra
tio

n
Tr

af
fic

 (G
B

)

Number of VMs to be migrated

 SmartShuffle
 Random

Figure 7. The total migration traffic in the VM shuffle

The simulation results in partitioned traffic pattern are
similar to global traffic pattern. Fig.5 shows the shuffle
duration time results for the simulation experiments. As
shown in the figure, the SmartShuffle outperforms Random
significantly on the shuffle duration. The shuffle duration of
SmartShuffle on average is 37.1% smaller than Random, as
shown in Fig.6. As the number of VMs increases in the
shuffle, the benefit of SmartShuffle increases, even up to
55.0% when 60 VMs are to be moved.

Fig.7 depicts the total migration traffic in the shuffle. As
shown in the figure, the total migration of both SmartShuffle
and Random are almost identical. That is, SmartShuffle gets
better improvement while cause very little extra migration
traffic.

V. CONCLUSION
To explore the opportunity to minimize the impact of

online VM shuffle to data centers, this paper designs

SmartShuffle, an efficient online VM shuffle scheduling
method. SmartShuffle tries to minimize the VM shuffle
duration by coordinating the proper sequence of VM
migration. VMs benefiting others maximally are migrated
preferentially. We employ the simulated annealing algorithm
to search for a solution to SmartShuffle. Our evaluation
shows that SmartShuffle decreases the shuffle duration
dramatically in both global traffic pattern and partitioned
traffic pattern.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China (No. 61002011); the 863 Program of
China (No.s 2013AA013303, 2011AA01A102); the Open
Fund of the State Key Laboratory of Software Development
Environment(No. SKLSDE-2009KF-2-08), Beijing Univers-
ity of Aeronautics and Astronautics; the 973 Program of
China (No. 2009CB320505).

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, and R.

Neugebauer, I. Pratt and A. Warfield. “Xen and the art of
virtualization,” in Proceeding of SOSP, 2003.

[2] R. Nathuji and K. Schwan, “Virtualpower: coordinated power
management in virtualized enterprise systems,” in Proceeding of
SOSP, 2007.

[3] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic Placement of Virtual
Machines for Managing SLA Violations,” in Integrated Network
Management 2007.

[4] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive fault tolerance for hpc with xen virtualization,” in
Proceeding of ICS, 2007.

[5] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “Enacloud: An
energy-saving application live placement approach for cloud
computing environments,” in Proceeding of CLOUD, 2009.

[6] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” In
Proceeding of INFOCOM, 2010.

[7] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and S.
Banerjee, “Application-aware virtual machine migration in data
centers,” In Proceeding of INFOCOM Mini, 2011.

[8] J.W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM
Placement and Routing for Data Center Traffic Engineering,” In
Proceeding of INFOCOM, 2012.

[9] X. Wen, K. Chen, Y. Chen, Y. Liu, Y. Xia, and C. Hu,
“VirtualKnotter: Online Virtual Machine Shuffling for Congestion
Resolving in Virtualized Datacenter,” In Proceeding of ICDCS, 2012.

[10] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” In Proceeding
of NSDI, 2005.

[11] V. Mann, A. Gupta, P. Dutta, and A. Vishnoi, “Remedy: Network-
Aware Steady State VM Management for Data Centers,” In
Proceeding of IFIP Networking, 2012.

[12] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and M.
Handley, “Data center networking with multipath TCP,” In
Proceeding of HotNets, 2010.

[13] M. L. Pinedo, “Scheduling: Theory, Algorithms, and Systems,”
Fourth Edition. Springer, 2012.

[14] XEN. http://www.xen.org.
[15] VMWare. http://www.vmware.com.

118

