
Calantha: Content Distribution across
Geo-Distributed Datacenters

Yangyang Li, Linchao Zhang, Yue Jia, Yong Liao, Haiyong Xie
Innovation Center

China Academy of Electronics and Information Technology, Beijing, 100041, China
Email: {yli, lzhang, yjia, yliao, hxie}@csdslab.net

Abstract—Large cloud service providers often replicate data to
multiple geographically distributed datacenters for availability
and service quality purposes. The enormous amount of da-
ta needed to be shuffled among datacenters call for efficient
schemes to maximally exploit the capacity of the inter-datacenter
networks. In this paper, we propose Calantha, a new rate
allocation scheme that improves the reliability and operabil-
ity of content distribution across geo-distributed datacenters,
without sacrificing capacity utilization and max-min fairness
among competing sessions. Calantha leverages hop-constrained
spanning tree to enhance the reliability of inter-datacenter links.
A novel approximation algorithm is proposed to solve the rate
allocation problem in polynomial time and achieve α-optimal
approximation. Our simulation results have shown that we can
reduce the number of spanning trees by 44.5%, as well as has
2.7% more average capacity utilization and 1.0% less minimum
spanning tree calculations.

I. INTRODUCTION

For the purpose of mitigating latency and increasing ser-
vice availability, cloud service providers build geographically
distributed networks of datacenters around the world and
replicate data across multiple geographic locations [1], [2].
Hence, maximally exploiting the capacity of inter-datacenter
networks is essential for cloud service providers to efficiently
distribute the exponential-growing content among their dat-
acenters. Software-driven WAN (SWAN) presented in [2] is
such an example, where centralized traffic engineering was
proposed to boost the utilization of inter-datacenter networks
by taking the priority requirements of different traffic cate-
gories into account.

The essence of the traffic engineering proposed by SWAN is
enabling multiple concurrent route updates in short time scales.
Not only Microsoft, Google adopts a similar centralized traffic
engineering mechanism in its B4 [1] architecture that splits
traffic flows among multiple inter-datacenter paths to balance
capacity against application priority. By employing centralized
traffic engineering, utilization can be improved by near 100%.
However, under this circumstance, the bandwidth efficiency
can still be quite low because transmitting data replicas via
unicast is not quite suitable for one-to-many communications.

In reality, one-to-many communications are quite commonly
applied within inter-datacenter networks for bulk data trans-
ferring. Bulk data often needs to be replicated to the data-
centers close to users. Typical services across geo-distributed
datacenters are content distribution, data migration, disaster
recovery and data backup. Those services could improve

the bandwidth efficiency of inter-datacenter links by using
multicast techniques. For example, Airlift [3] aggregates video
conferences to a small number of multicast sessions among
datacenters. However, it achieves the maximal throughput at
the cost of sacrificing the fairness among sessions involved
in the same aggregated session. Afterward, multicast through
multiple spanning trees, named Blossom [4], was proposed to
improve the throughput of multicast sessions while maintain-
ing fairness among multiple multicast sessions.

Similar to B4, Blossom splits traffics of multicast sessions
to multiple inter-datacenter spanning trees. Theoretically, it
could improve the throughput of multicast sessions as well
as promote the utilization of inter-datacenter links. However,
implementing Blossom in reality faces a few challenges. On
one hand, the number of spanning trees used by the multicast
session grows exponentially as session scale increases. It is
common that cloud service providers use more than five
datacenters to replicate data [5], which means at most 125
spanning tress shall be used to boost the content distribution.
Nevertheless, implementing one deployable multipath protocol
is already tough and hardware consuming [6]. Secondly,
content distribution through a large number of hops can cause
potential reliability issue for content distribution, because each
link can fail independently so as to cause an entire path to fail.
An early study [7] pointed out that the data paths should be
constrained to 3 hops, so as to avoid performance degradation
of the inter-datacenter network.

In order to overcome the drawbacks of existing work such as
Blossom and B4, we intend to limit hops which can be applied
by inter-datacenter spanning trees. In one of our simulation
experiments, we apply Blossom algorithm with 7 datacenters
and 10 multicast sessions, 459 spanning trees were used. The
number of spanning trees can be reduced to 214 and 226 if
we constrained the largest hops in the spanning trees to 2
hops and 3 hops, respectively. Reducing the used spanning
trees can greatly reduce the complexity of content distribution
system. Interestingly, we found that even if we constrained
the spanning trees that can be used by each multicast session,
the rate of such multicast sessions did not have obvious
degradation. For instance, in the same simulation experiment,
one of the session rates is 11.02 Mbps with Blossom, and it
changes to 11.74 Mbps and 10.15 Mbps respectively with 2
hops constrained and 3 hops constrained spanning trees.

In this paper, we present Calantha, a content distribution

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): DCC 2017: Distributed Cloud Computing: Applying Scale Out to
the Data Center

978-1-5386-2784-6/17/$31.00 ©2017 IEEE 724

method that uses hop-constrained spanning trees to enhance
the reliability of inter-datacenter links as well as boost the
utilization of inter-datacenter links. Moreover, our method
can also achieve fairness among different sessions. Calantha
is formulated as a variant of the maximum concurrent flow
problem [8]. A fully polynomial time approximation scheme
(FPTAS) is developed to provide a faster and simpler solution
to the problem. The key idea towards making the problem
tractable is to formulate the hop-constrained minimum span-
ning tree problem to multi-commodity flow problem. Hence,
existing heuristic algorithm can be used to make Calantha
achieve α-optimal approximation in polynomial time. Through
extensive trace-driven simulation study, we show that our
approach is substantially more efficient than those state-of-
the-art approaches previously proposed in the literature.

The remainder of this paper is organized as follows. We
introduce the motivation in Sec. II and then formulate the
rate allocation problem in Sec. III. In Sec. IV, we briefly
describe a new algorithm and discuss the time complexity of
the proposed algorithm. Amazon EC2 trace-based simulation
results are presented in Sec. V, followed by related work in
Sec. VI and our conclusion in Sec. VII.

II. MOTIVATION

We use a toy example to illustrate the basic idea of
Calantha. Fig. 1 depicts an inter-datacenter network with five
datacenters connected by directed links, where the capacity of
each link at each direction is 1 unit. We have two multicast
sessions, both of which need to deliver data to other datacen-
ters from D1 at the rate of 1 unit. Session 1 has only one
destination, D2. Session 2 has three destinations, D2, D3, and
D4.

D1

D2
D4

D5

D3

Fig. 1. A toy example of rate allocation for two multicast sessions in an
inter-datacenter network.

Suppose that the goal is to maximize the capacity utilization
of all links. One could allocate all the available capacity of link
{D1 → D2} to session 1 or session 2. However, this can lead
one of these sessions to be starved. One attempt to solve this
problem was to introduce fairness among competing sessions.
More specifically, the demands of both sessions are required
to be equally satisfied and the strategy is to find spanning trees
that maximize session rate in equal portions per demand. As a
result, the optimal rate allocation for the two sessions should
both be 0.6 unit. session 1 uses link {D1 → D2} at a rate
of 0.6 unit, session 2 uses spanning trees {D1 → D3 →

D2, D1 → D4} and {D1 → D2, D1 → D3, D1 → D4} at the
rate of 0.2 unit and 0.4 unit respectively.

Obviously, this solution causes the inter-datacenter links to
be under-utilized, since the rate of session 2 could be increased
by using other unsaturated links. It is preferable to increase
the rate of session 2 while not decreasing the rate of session
1, as the links other than {D1 → D2} are not shared with
session 1. The Blossom algorithm proposed in [4] computes
rate allocation and spanning trees to maximize the capacity
utilization and adhere to the max-min fairness criterion [9].
The resulted rate allocation are 0.6 unit for session 1, and 1.2
units for session 2.

The outcome of Blossom in solving the example shown in
Fig. 1 is quite attractive. However, Blossom requires session
2 to use 8 spanning trees. Furthermore, two of the spanning
trees have 3 hops, e.g., {D1 → D4 → D3 → D2}. Large
number of spanning trees leads to higher management cost of
maintaining those trees; deep trees often mean more resources
are needed to transfer the data to its destination datacenters.
These two reasons motivate us to explore the design space of
reducing the number of spanning trees used by each session
as well as making the spanning trees use less hops.

Our basic idea is to use hop-constrained minimum spanning
trees instead of minimum spanning trees to enhance the
reliability of inter-datacenter links. The rate allocation in the
example shown in Fig. 1 is 0.6 unit for session 1, and 1.2
units for session 2, the same as Blossom. What’s interesting
here is that session 2 only needs to using 3 spanning trees,
{D1 → D3, D1 → D4 → D2}, {D1 → D4 → D2, D1 →
D4 → D3}, and {D1 → D2, D1 → D3, D1 → D4}. Each
of the spanning trees is allocated 0.4 unit, and the deepest
spanning tree has 2 hops only.

III. MODEL AND FORMULATION

We consider a scenario where a cloud service provider runs
multiple datacenters. These datacenters are fully connected
with each other, and the inter-datacenter network is a complete
graph denoted as G = (V, E), where V is the set of datacenters,
and E = {(m,n) : m,n ∈ V} is the set of directed links
between datacenters. For a directed link e = (m,n) ∈ E ,
we use cmn to denote the capacity of link e, which is the
maximum rate of data transmission over e. To be mentioned
here, we assume that fixed capacity of each link is reserved
for content distribution, and the rate allocation is executed
periodically.

Let S be the set of all multicast sessions among datacenters
to distribute contents. Each session Si ∈ S is represented
as a tuple Si = (Gi, si, demi), where Gi = (Vi, Ei) is a
subgraph of graph G. Vi ⊆ V represents the set of datacenters
involved in session Si, and Ei ⊆ E are all the links connecting
them. si is the root of the multicast tree (i.e., the source
datacenter), and demi is the desired content distribution rate
from source datacenter si to other datacenters in Gi. Suppose
that there are |S| multicast sessions for content distribution.
For each multicast session Si, let Ti be the set of inter-
datacenter spanning trees that are used by session Si to

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): DCC 2017: Distributed Cloud Computing: Applying Scale Out to
the Data Center

725

distribute contents, and xj
i be the allocated rate of session

Si’s jth spanning tree.
To constrain the number of hops for each path within

a given integer value H (from the source datacenter si to
every other datacenter), as well as to limit the total number
of spanning trees in Ti, we formulate the hop-constrained
minimum spanning tree problem to a multi-commodity flow
problem as the following.

minimize

−
∑

(m,n)∈Ei

cmn · xmn

 (1)

subject to
∑
m∈Vi

xmn = 1, ∀n ∈ Vi \ {si}, (2)∑
m∈Vi

ykmn −
∑

m∈Vi\{si}

yknm = 0, (3)

∀k, n ∈ Vi \ {si}, n ̸= k,∑
m∈Vi

ynmn = 1, ∀n ∈ Vi \ {si}, (4)∑
(m,n)∈Ei

ykmn ≤ H, ∀k ∈ Vi \ {si}, (5)

ykmn ≤ xij , ∀(m,n) ∈ Ei, ∀k ∈ Vi \ {si}, (6)
xmn ∈ {0, 1},∀(m,n) ∈ Ei, (7)

ykmn ∈ {0, 1}, ∀(m,n) ∈ Ei,∀k ∈ Vi \ {si}
(8)

The decision variable xmn
1 represents whether the inter-

datacenter link (m,n) is in session Si’s spanning tree, and
ykmn represents whether link (m,n) is in the path from node
si to node k. Equation (1) represents the cost function to
be minimized. Here we choose the residual capacity of each
link as cost measurements, hence the minimum spanning tree
represents a tree that has the largest idle paths. Equation
(2) guarantees that every datacenter in the spanning tree has
only one edge entering it. Constraints (3) refers to the flow
conservation constraints. Equation (4) and (5) ensure that the
hop constraint is guaranteed. Equation (6) states that an inter-
datacenter link (m,n), within the spanning tree, can only
be one of the paths between the root datacenter si and one
datacenter k.

As inter-datacenter links are shared by spanning tress from
multiple multicast sessions, it is desired to obtain an optimal
rate allocation method without exceeding link capacities. The
objective is to find a rate allocation plan so that the minimum
session rate in the session rate vector had been maximized.
Such an objective can be rigorously formulated as a lexico-
graphical maximization problem as the following.

Definition 1. The rate allocation method for all |S| sessions is
denoted as a vector x̄ = (x1

1, ...x
|T1|
1 , ...x1

|S|, ...x
|Tn|
|S|). Under

rate allocation method x̄, we define the session rate vector

1To clarify, we reuse the symbol x here. However, it is clear for the reader
to distinguish the meaning from the context. xj

i represents the rate allocated
to session Si on the jth spanning tree.

f(x̄) as f(x̄) = (f1, f2, ..., f|S|), where fi =
∑

tji∈Ti
xj
i is

referred to the session rate of Si.

Definition 2. A session rate vector f
′

is called lexico-
graphically greater than vector f

′′
, f

′ ≻ f
′′

, if there is
j ∈ {1, ..., |S|} such that f

′

i = f
′′

i , for all i ∈ {1, ..., j − 1}
and f

′

j > f
′′

j . If f
′ ≻ f

′′
or f

′
= f

′′
then we write f

′ ≽ f
′′

.

For example, if there are three multicast sessions, the
session rate vector (1, 2, 4) is lexicographically greater than
(1, 1, 5). Hence, (1, 2, 4) ≻ (1, 1, 5).

Definition 3. The lexicographical maximization problem for a
given feasible set z and a session rate vector f(x) is denoted
as

lexmaxx∈zf(x) = (f1(x), f2(x), ..., f|S|(x)). (9)

Solving this problem is to find a vector x∗ ∈ z for which
f(x∗) is lexicographically maximal over z, i.e., for all x ∈ z,
f(x∗) ≽ f(x).

The lexicographic optimization can be treated as a sequen-
tial optimization process, where we first maximize f1(x) on
the entire feasible sets z, and then maximize f2(x) on the
resulting optimal set.

Definition 4. Let ⟨y⟩ = (⟨y⟩1, ⟨y⟩2, ..., ⟨y⟩t) denote a version
of vector y = (y1, y2, ..., yt) ∈ Rt ordered in the non-
decreasing order. The max-min fairness optimization problem
for given z and f(x) is as following:

lexmaxx∈z⟨f(x)⟩ (10)

The difference between lexicographic optimization and
max-min fairness optimization is that the order of sessions
in lexicographic optimization case is known. However, in the
latter case, the order is unknown beforehand. First we try
to maximize the minimum rate that can be allocated to all
the sessions. Due to capacity constraints, some sessions are
saturated, so we have ⟨f(x)⟩1. Then we try to maximize the
second minimum rate ⟨f(x)⟩2.

Considering the link capacity constraint, this max-min fair-
ness rate allocation problem can be formulated as following:

lexmax ⟨f(x)⟩ (11)

subject to
|S|∑
i=1

|Ti|∑
j=1

xj
i · δe(t

j
i) ≤ ce,∀e ∈ E (12)

xj
i ≥ 0, ∀i,∀j (13)

Here δe(t
j
i) is an indicator function, δe(t

j
i) = 1 if link e

appears in the spanning tree tji . δe(t
j
i) = 0, otherwise.

IV. ALGORITHM

The problem defined in (11) ∼ (13) can be solved by ex-
tending the algorithm proposed in [4]. The algorithm proceeds
in phases. In each phase, we first calculate the hop-constrained
minimum spanning tree for each session, then we maximize
the rates across all multicast sessions and allocate rates on
corresponding hop-constrained minimum spanning tree to the

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): DCC 2017: Distributed Cloud Computing: Applying Scale Out to
the Data Center

726

TABLE I
AVAILABLE BANDWIDTH (MBPS) ACROSS GEO-DISTRIBUTED AMAZON

EC2 DATACENTERS. VA, OR, CA, EU, SG, JP AND BR CORRESPOND TO
VIRGINIA, OREGON, CALIFORNIA, IRELAND, SINGAPORE, TOKYO AND

BRAZIL, RESPECTIVELY

VA OR CA EU SG JP BR

VA 65 68.4 54.3 26.9 38 65.7
OR 91.8 72 17.9 20.7 19 26.8
CA 30.1 44.7 16.8 51 20.9 20.8
EU 60.3 40.5 38.4 16.9 26.7 10.9
SG 22.5 33.3 34.6 26.3 59.8 12.4
JP 50.1 52.4 60.1 26.3 57.9 22.1
BR 38.6 24.6 52.5 19.5 8.55 15.3

sessions that are saturated at the current phase. These sessions
whose rates are already maximized are then excluded from
the next phrases. The entire procedure stops when all sessions
are excluded or all links are saturated. Since this algorithm
is inspired by our previous Blossom algorithm, and it yields
better rate allocations, we name it Calantha. Calantha means
beautiful Blossom in Greek.

The essence of Calantha is a hop-constrained minimum
spanning tree algorithm instead of the minimum spanning
algorithm used in Blossom. It has been proven that the hop-
constrained minimum spanning tree problem is NP-hard [10],
[11] and heuristic algorithms proposed in literature, such
as [12], [13], can be adopted to solve this problem with
manageable cost. In most scenarios, the number of datacenters
involved in a multicast session is limited, e.g., Google reported
that it has 15 datacenters [14], the decision variables in our
hop-constrained minimum spanning tree problem will not be
too large. We use the Linear Programming solver in the SCIP
Optimization Suite [15] to solve the problem in acceptable
running time.

In Blossom, we use the Chu-Liu/Edmond algorithm [16]
to find the minimum spanning tree in a directed graph. The
running time of this algorithm is O(|E||V|). Calantha uses
heuristic algorithm to develop an approximation solution to
the hop-constrained minimum spanning tree problem. Ac-
cording to [17], an O(log|V|)-approximation algorithm can
be solved with running time O(|V|5H), which ensures that
Calantha can run in polynomial time. In particular, the running
time of Calantha is O((1 − α)−2log|E|(2|S|2log|S||V|5H +
|S||E||V|5H)). More details can be found in our technical
report [18].

V. EVALUATION

In this section, we evaluate Calantha via extensive sim-
ulations and compare it performance with Blossom [4] and
MCF [19]. MCF is a variant of the multiple concurrent flow
method. We begin with a comparison of number of spanning
trees that are used by each session with different algorithms.
Then we verify whether our method still achieves high average
capacity utilization of inter-datacenter links, and whether the
rate allocation among competing multicast session is still max-

TABLE II
5 SESSIONS WITH DIFFERENT DEMANDS AND DESTINATION SETS

SessionID Source DestinationSet Demand
1 1 [7,6] 1
2 3 [5,1,6] 5
3 6 [1,7,3,5] 7
4 4 [1,7,6,5,3] 2
5 2 [1,7,6,5,4,3] 3

min fair. Finally, we evaluate the running time of Calantha
with various approximation parameters.

To simulate the inter-datacenter link capacity constraints of
a real environment, the parameters used in our simulation
are based on our measurement of the available bandwidth
between 7 Amazon EC2 datacenters. The available bandwidth
is measured via Iperf [20], and we report our measurement
results in Table I. We conduct five groups of simulations in a 5
mutlticast sessions and 7 datacenters involved inter-datacenter
network, with the approximation parameter α set as 50%, 60%,
70%, 80%, and 90%. We randomly set the demand rate of each
session in the range of [1,10], and randomly set the number of
datacenters in each session in the range of [2,7]. The source
datacenter is also randomly selected and it has 5 pieces of data
to be distributed at the same time. The session information is
listed as in Table. II, and the numbers in the range of [1,7]
are used to denote different datacenters.

Fig. 2 shows the number of spanning trees used in each
session by MCF, Blossom, Calantha2 (2-hop constrained),
and Calantha3 (3-hop constrained). With all approximation
parameters, Blossom uses the largest number of spanning
tress, while Calantha uses the least. In particular, Calantha2
allocates less than half of the spanning trees that are used in
session 2, 3, and 5 compared with both Blossom and MCF. We
also find that when the destination set in the sessions is not
large, such as session 1, the number of spanning trees yielded
by different algorithms does not have noticeable differences.
As the destination set grows larger, the differences become
more significant. For example, when α = 80%, in session
5, the number of spanning trees used by MCF, Blossom,
Calanth2 and Calantha3 is 189, 220, 122 and 25, respectively,
where Calanth2 and Calantha3 yield 44.5% and 88.6% less
trees as compared to Blossom, respectively.

Fig. 3 presents the average capacity utilization achieved
by different algorithms, with the approximation parameter set
as 50%, 60%, 70%, 80%, and 90%, respectively. Compared
with MCF, Calantha2 and Calantha3 increase the average
capacity utilization by up to 17.8% and 12.3%, respectively.
Our simulation results also show that Calantha outperforms
Blossom, with the exception that Calantha3 has lower average
capacity utilization than Blossom when α = 90%. In case
of α = 80%, even Calantha greatly reduce the number of
spanning trees used in the multicast sessions, the average
capacity utilization doesn’t decrease.

To verity that the resulted rate allocation of our algorithm

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): DCC 2017: Distributed Cloud Computing: Applying Scale Out to
the Data Center

727

(a) α = 60% (b) α = 70% (c) α = 80%

Fig. 2. Comparison between the number of spanning trees used in each session by MCF, Blossom and Calantha.

(a) α = 60% (b) α = 70% (c) α = 80%

Fig. 4. Comparison between the demand satisfaction ratio by MCF, Blossom and Calanth.

Fig. 3. Average capacity utilization in the inter-datacenter network.

remains max-min fair, we compared the demand satisfaction
ratio achieved by each session in Fig. 4. With MCF, all ses-
sions have nearly the same demand satisfaction ratio, around
1.2, as the absolute fairness must be maintained in MCF.
In contrast, both Calantha and Blossom continually increases
the rate of session 1 after other sessions are saturated due to
link capacity constraints. That is to say, Calantha maintains
the property of max-min fairness. Moreover, we find that
the rates of session 4 and session 5 are increased obviously
in Calantha2 when we constrain the number of hops in a

spanning tree to be 2. It is probably because of the short hops
make it less possibly to have link share with other sessions.

Fig. 5. Comparison of runtime (minimum spanning tree calculations).

We next compare the running time of MCF, Blossom,
and Calantha. Since both Blossom and Calantha continually
increase the rate to unsaturated sessions, we can see from
Fig. 5 that Blossom and Calantha have much more minimum
spanning tree calculations than MCF. However, Calantha2
spends less running time than Blossom. In particular, when
α = 90%, Calantha2 has 9.8% less minimum spanning
tree calculation than Blossom, and it has only 5.3% more

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): DCC 2017: Distributed Cloud Computing: Applying Scale Out to
the Data Center

728

calculation than MCF.
In general, Calantha significantly reduces the number of

spanning trees that are used by each multicast sessions, with-
out sacrificing the average capacity utilization and maintaining
max-min fairness among competing sessions. When α = 80%,
Calantha2 reduces the number of spanning trees by 44.5%
as compared to Blossom. Besides, it has 2.7% more average
capacity utilization and 1.0% less minimum spanning tree
calculations.

VI. RELATED WORK

Improving capacity utilization of inter-datacenter networks
via centralized traffic engineering is an active research topic
recently [2], [1]. The basic idea of these approaches is a
max-min fair multicommodity flow solution. However, when
each commodity becomes a multicast session that consists of
a source datacenter and several destination datacenters, the
problem becomes much more challenging even in a centralized
way.

Airlift [3] binds the multicast session originated from the
same datacenter to the same set of destination datacenters as
an aggregated session. It achieves the maximal throughput at
the cost of sacrificing the fairness among sessions involved in
the same aggregated session.

Some papers in peer-to-peer research area also consider
the problem of the tradeoff between capacity utilization and
multicast session fairness [21], [22], [23]. In peer-to-peer
networks, distributed algorithms are desired because individual
peer doesn’t have a global view on network topology.

VII. CONCLUSION

In this paper, we focus on how content may be replicated
across geo-distributed datacenters reliably. The motivation of
our scheme is two-fold. First, it is not necessary to use
all spanning trees to boost the rates of multicast sessions,
and secondly, it is not reliable to use spanning trees with
more than 3 hops. We formulate the problem as a variant of
multiple concurrent commodity flow problem, by considering
both the link capacity and spanning tree hop constraints. An
approximation algorithm named Calantha is developed, which
constrains the largest hops in minimum spanning trees. We use
extensive trace-driven simulation to evaluate the performance
of Calantha, and show that the algorithm can significantly
reduce the number of spanning trees used for content dis-
tribution, and maintain max-min fairness among competing
sessions without sacrificing capacity utilization. As part of our
future work, we will implement a prototype to verify whether it
is beneficial and more reliable to use hop-constrained spanning
trees in a real inter-datacenter overlay network.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their careful reading of our manuscript and their many
insightful comments and suggestions.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venka-
ta, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and
A. Vahdat, “B4: Experience with a globally-deployed software defined
wan,” in Proc. ACM SIGCOMM, 2013, pp. 3–14.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[3] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a cloud service
using inter-datacenter networks,” in Proc. IEEE ICNP, 2012, pp. 1–11.

[4] Y. Li, H. Xie, and Y. Liao, “Blossom: Content distribution using inter-
datacenter networks,” in Proc. IEEE GLOBECOM, 2016.

[5] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” 2011.

[6] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing
and implementing a deployable multipath tcp,” in Proc. USENIX NSDI.
USENIX, 2012.

[7] A. Balakrishnan and K. Altinkemer, “Using a hop-constrained model to
generate alternative communication network design,” ORSA Journal on
Computing, vol. 4, no. 2, pp. 192–205, 1992.

[8] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow
problem,” Journal of the ACM (JACM), vol. 37, no. 2, pp. 318–334,
1990.

[9] P. Marbach, “Priority service and max-min fairness,” IEEE/ACM Trans-
actions on Networking (TON), vol. 11, no. 5, pp. 733–746, 2003.

[10] G. Dahl, “The 2-hop spanning tree problem,” Operations Research
Letters, vol. 23, no. 1, pp. 21–26, 1998.

[11] L. Alfandari and V. T. Paschos, “Approximating minimum spanning tree
of depth 2,” International Transactions in Operational Research, vol. 6,
no. 6, pp. 607–622, 1999.

[12] L. Gouveia, “Multicommodity flow models for spanning trees with hop
constraints,” European Journal of Operational Research, vol. 95, no. 1,
pp. 178–190, 1996.

[13] L. Gouveia and C. Requejo, “A new lagrangean relaxation approach
for the hop-constrained minimum spanning tree problem,” European
Journal of Operational Research, vol. 132, no. 3, pp. 539–552, 2001.

[14] “Data center locations,” http://bit.ly/2ntZ9Yy.
[15] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch,

S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch et al., “The scip
optimization suite 3.2,” ZIB Report, pp. 15–60, 2016.

[16] Y.-J. Chu and T.-H. Liu, “On shortest arborescence of a directed graph,”
Scientia Sinica, vol. 14, no. 10, p. 1396, 1965.

[17] E. Althaus, S. Funke, S. Har-Peled, J. Könemann, E. A. Ramos, and
M. Skutella, “Approximating k-hop minimum-spanning trees,” Opera-
tions Research Letters, vol. 33, no. 2, pp. 115–120, 2005.

[18] Y. Li, “Content distribution across geo-distributed datacenters,”
http://bit.ly/2mBLEs7, Tech. Rep., 2017.

[19] Y. Cui, B. Li, and K. Nahrstedt, “On achieving optimized capacity
utilization in application overlay networks with multiple competing
sessions,” in Proc. ACM SPAA, 2004, pp. 160–169.

[20] “Iperf - the tcp/udp bandwidth measurement tool,” http://iperf.fr/.
[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,

and A. Singh, “Splitstream: High-bandwidth multicast in cooperative
environments,” in Proc. ACM SOSP, 2003, pp. 298–313.

[22] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou, “Utility
maximization in peer-to-peer systems,” in Proc. ACM SIGMETRICS,
2008, pp. 169–180.

[23] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Hetero-
geneous unstructured tree-based peer-to-peer multicast,” in Proc. IEEE

ICNP, 2006, pp. 2–11.

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): DCC 2017: Distributed Cloud Computing: Applying Scale Out to
the Data Center

729

