
ME2: Efficient Live Migration of Virtual Machine With Memory Exploration and
Encoding

Yanqing Ma, Hongbo Wang, Jiankang Dong, Yangyang li, Shiduan Cheng
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications, Beijing, 100876, China
e-mail: myqbupt@gmail.com, { hbwang, dongjk, yyli, chsd } @bupt.edu.cn

Abstract—Live migration of virtual machineplays an

important role in datacenter, which can successfully migrate
virtual machine from one physical machine to another with
only slight influence on upper workload. It can be used to
facilitate hardware maintenance, load balancing, fault-
tolerance and power-saving, especially in cloud computing
datacenters. Although the pre-copy is the prevailing approach,
it cannot distinguish which memory page is used, resulting in
transferring large amounts of useless memory pages. This
paper presents a novel approach Memory Exploration and
Encoding (ME2), which first identifies useful pages and then
utilizes Run Length Encode algorithm to quickly encode
memory, to efficiently decrease the total transferred data, total
migration time and downtime. Experiments demonstrate that
ME2 can significantly decrease 50.5% of total transferred
data, 48.2% of total time and 47.6% of downtime on average
compared with Xen’s pre-copy algorithm.

Keywords— Data Center, Virtualization, Virtual Machine
Migration, XEN.

I. INTRODUCTION
Virtual machine(VM) not only works as efficient and

secure resource container but also can migrate smoothly
from one physical machine(PM) to another. Live migration
of VM has been a powerful technique in VM-based
datacenter. It has been wildly used in the following
scenarios: hardware maintenance, load balancing, fault -
tolerance and power-saving.

Three targets should be to achieve for live migration of
VM: short disruption time, as less transferred data and
migration time as possible. The disruption time refers to the
period from the moment source VM shutdown to that the
destination one begins to run normally, which is nearly
dozens to hundreds of milliseconds. However, the migration
time means the lasting time of the whole migration process
starting from transferring the first byte, also known as
occupying CPU time. And the transferred data consists of
memory data, CPU register state, and network connection
state etc. The memory data take up more than 99% of all the
transferred data, in which more than half is duplicative or
useless and seriously wastes network bandwidth.

In the state of the art, pre-copy is the predominant
approach in live migration of machine [1-8]. In the first
round, it transfers the whole memory i.e. checkpoint of the
source VM. In the following rounds, it only transfers pages
dirtied last time. When the dirtied pages lower to a threshold
(e.g. 256KB), or the iteration times come up to a threshold
(e.g. 30 times), or the pages dirty faster than the network
bandwidth, it will transfer the remaining dirty pages, CPU

register state and network connection state. And the
destination VM restores the remaining data quickly and takes
over all the upper services.

Through our experiments using Xen[9] as virtualization
platform, we find that the Xen migration system simply
transfers the whole memory,and do not distinguish useful
memory pages from the useless. That means it transfer the
VM memory pages one by one, including the unallocated
pages. Such an approach leads to wasting much of network
bandwidth, taking longer migration time and taking up much
more PM's CPU resource.

In this paper, we present a novel approach ME2 which
first jumps into the VM to explore the virtual machine’s
memory and then output a bitmap indicating which page is
used/allocated or not so that the migration system can
transfer only one byte instead of one page (usually 4KB) for
those useless/unallocated pages. As for those useful pages,
we try to adopt a RLE (Run Length Encode) algorithm to
compress for further decreasing data amount. Compared with
other complicated compression algorithms, RLE slightly
takes upon CPU time and has little influence on other
brotherhood-VMs, i.e. VMs on the same PM.

With four typical datacenter workloads running on the
migrating VM, our experiments show that ME2 can decrease
47.6% of disruption time, 48.2% of migration time and
50.5% of total transferred data on average. And the amount
of total transferred data impacts other two indexes.

The rest of this pager is structured as follows. Section II
introduces related work, and Section III presents our design
of ME2. Section IV presents our implementation and
evaluation. Finally, Section V concludes the paper.

II. RELATED WORK
According to the sequence of migrating memory data and

restarting VM, live migration of virtual machine includes
two main categories: pre-copy and post-copy. In post-copy,
when migrating VM, both the source PM and destination PM
have the newest memory data.

Pre-copy is the predominant technique to perform live
migration of VM and also Xen’s default algorithm.
Therefore, even the destination node crashes in the migration
process, what the source node needs to do is aborting the
migration and continue to run, which is reliable all the time.
However, when the dirty rate is high, pre-copy must
iteratively transfer large amounts of duplicated memory
pages dirtied frequently.

In order to solve such problem, Clark et al. [1] simply
detect the writeable work-set pages and only transfer the
pages that are not dirtied last iteration. Trace-replay [5] is

2012 IEEE International Conference on Cluster Computing

978-0-7695-4807-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CLUSTER.2012.52

610

also introduced, which traces and logs the dirty data at the
source VM and replays it at the destination one. Since the
trace amounts are much smaller than that of all dirtied pages,
trace-replay can significantly improve the migration
performance in the second and later iteration while it can’t
decrease the transferred data of checkpoint, the main portion
of total transferred. However, ME2 can significantly
decrease the transferred data of the first round which makes
up almost 20%~30% of total.

In paper [6], T. Wood et al. utilize Content Based
Redundancy (CBR) elimination technique which compares
the memory with another copy of last iteration and only
transfers the differences. So [6] split the generally 4KB page
into smaller fixed size block for finer granularity distinguish.
[6] exhibits a significant performance because it only
transfers dirty bytes rather than the whole 4KB page, similar
to trace-replay. But [6] would maintain another copy of
memory data, while ME2 only utilize 4MB memory as
buffer.

There are also other choices. [7, 8] utilize compression
algorithm or hash based fingerprints technique in live
migration of VM and can distinguish zero-page or similarity-
page. However, the migration performance would shrink
when the VM works for a long time and the memory is
allocated and reclaimed repeatedly. So the amount of zero-
page will become fewer and fewer. For those reclaimed
memory pages filled with non-zero data, [7, 8] can not
recognize, But ME2 could walk through the unallocated page
list so as to correctly recognize.

Rather than conflicting with above-mentioned
algorithms, our research can combine with any of the
methods above and complement with each other, e.g ME2
can work with trace-replay[5] in the first round.

III. DESIGN AND IMPLEMENTATION
In this section, we first introduce the design of our

migration system including memory exploration and
memory Run Length Encode (RLE) algorithm. Then we
demonstrate the implementation with Xen-3.4.3 as virtual
engine and Linux as Guest OS.

A. Memory Exploration
From our previous work with Xen-3.4.3, we found that

Xen simply migrates the whole memory of source VM to
destination node without any work of distinguishing which
page is allocated or not. The total migration time is in direct
proportion to the memory size of VM without any workload.
Suppose there is a two- Giga-Bytes virtual machine with half
of memory used and another half free. When migrating such
a VM, it is certain that one-Giga-bytes memory is
unnecessary to transfer, which would lead to a huge waste of
network bandwidth.

But in the state of the art, Xen can’t provide the memory
utilization of Guest OS. Hence, we utilize a white box
approach to probe and design an agent module to perform
such an exploration which depends on the memory allocation
mechanism. The migration daemon will decide which page
to send according to the bitmap in the first iteration.

B. Memory Encode
In our ME2 migration system, we divide memory pages

into two groups: unallocated and allocated. Memory
Exploration can accomplish such work perfectly so as to
prevent transferring unallocated memory pages significantly,
which is the major contribution of decreasing traffic
amounts. In our previous work, we found that VM memory
has a characteristic that there are lots of similar pages. For
further optimization and with little influence on host
machine, we adopt RLE algorithm to compress those
allocated pages.

RLE is an algorithm that only runs the whole memory
once and utilizes only one copy to present consecutive same
data. It consumes little CPU time to encode and decode
resulting in slight influence on host machine and other
brotherhood-VM. Comparing with ignorable cost, RLE can
operate 20%-30% performance optimization in the following
experiments.

C. Implementation
As a concrete implementation, we adopt Linux as Guest

OS with kernel-2.6.18.8. Therefore, in the Memory Explorer
module, we can walk through the whole VM memory by
Linux memory management mechanism Buddy System
which maintains each unallocated page’s meta-data. Then we
can translate the meta-data’s address to the real page’s
address. After that, we can get the page number in the whole
VM memory and set corresponding bit of the bitmap.

As Table 1 demonstrates, each time before pre-copy’s
iteration, the Migration Daemon would request the Memory
Explorer for bitmap. According to the bitmap, the Migration

Open log dirty mechanism;
while(true){

bitmap = get bitmap form VM;
for each page{
 //page is unallocated

if(!bitmap[page])
 send 1byte NODATA;

else{
 size =
try_RLE([in]page,[out]compressed_page);
 if(size < page_size){
 send 1byte COMPRESSED;
 send compressed_page;
 }

else{
 send 1byte NOCHANGE;
 send the original page;
}

}
}
If(last iteration) break;

}
Transfer CPU context and network connection state;
Suspend VM;
Switch to destination VM;

Table 1. Pseudo Code of ME2

611

Daemon only sends one byte NODATA for those
unallocated pages to the destination daemon. And for those
allocated pages the Migration daemon tries to encode the
page using RLE algorithm. If such encoding is cost-efficient,
i.e. the compressed data is smaller than page size (generally
4KB), the migration daemon sends one byte COMPRESSED
so that the destination migration daemon can decode the
compressed data. Otherwise, it sends one byte NOCHANGE
to the destination. However, the compressed data is buffered
and accumulates up to 4MB to send. The pseudo code is as
Table 1 illustrates.

However, one point is very important that we must open
the mechanism of logging dirty pages first before exploring
the guest OS’s memory so that the dirtied pages caused by
exploration module can be marked and correctly transferred
in the next iteration.

Also, we execute memory exploration in each iteration
mainly because the applications running on guest OS apply
for and release memory dynamically. As a result, the pages
dirtied last iteration could be reclaimed by the operating
system and such pages are unnecessary to transfer, though
they are dirtied. So memory exploration can prevent such
useless work.

IV. EVALUATION
In this section, we demonstrate our ME2 migration

system with some various characteristic workloads on server,
and evaluate the performance and improvement of our ME2
compared with Xen’s default pre-copy algorithm.

A. Overview of Environment and Workloads
In this section we describe our ME2 system

implementation in detail. Xen (version 3.4.3) runs on two
machines, one with an Intel Core 2.93GHz dual processor
and 4G RAM, and another with Intel Core i5 2.80GHz quad
processor and 8G RAM. The two machines are connected
with 100Mbps bandwidth and use NFS (Network File
System) as share storage of VM disk. And we use another
machine act as the NFS storage server. And the VM’s
memory size is 1G.

None: in this scenario, we just migrate VM without any
workload running on it so as to compare with other
workloads.

Static Web: We use another server running siege to
emulate 100 clients concurrent connected to the migrated
VM which runs apache version 2.2.3. And siege can generate
random Delay to simulate human activity when requesting
for static web files.

Dynamic Web: In order to emulate dynamic web
service, we run an open-source software PhpBB3 as forum
and use MySQL as database. With 50 concurrent
connections, the database data will be read frequently and
will cause large quantities of dirty pages.

Stream Video: We emulate 10 users simultaneously
requesting for video contents and the video data is
transferred with http. And such workload takes upon much
memory for buffer.

Kernel Compile: Migrating a VM while it is compiling
kernel source code. This is supposed to be with very fast

dirty rate. However, the dirty rate is not as fast as we thought
because of the time slice Round-Robin.

B. Performance Evaluation of ME2
Figure 1 shows the total transferred data of ME2 with

different workloads. Compared with Xen’s pre-copy
algorithm, ME2 can decrease nearly 50.5% of the transferred
data on average, in which Memory Exploration contributes
30% while RLE 20%. Figure 2 illustrates the total migration
time of ME2 and Xen. In spite of the low bandwidth, ME2
still has an average 48.2% improvement. Figure 3
demonstrates the average downtime improvement is so close
to that of total transferred and total time, nearly 47.6%.

From Figure 1 and 2, it is found that the total transferred
data of kernel compile is less than that without workload
while the total migration time is converse. Because the total
transferred data and and different workloads which cause
different dirty rates.

Therefore, the reason for such situation is that the free

memory size of kernel compile is larger than that without
any workload. And why migration of kernel compile lasts
longer than the one with none workload? This is because the
memory pages dirtied this time will be postponed to transfer
next time. Hence, kernel compile will need more iterations
than none workload, 13 and 5 iterations respectively in our
experiments.

From our experiments, we see ME2 can improve all the
three targets nearly 50%. Figure 4 gives the answer. Taking
dynamic web workload as an example, ME2 can decrease
more than half of network traffics in each iteration.

Figure 2. The transferred time of ME2 compared with Xen
running various workloads (VM size: 1GB)

Figure 1. The transferred data of ME2 compared with Xen
running various workloads (VM size: 1GB)

612

In order to evaluate the migration efficiency of ME2 with

different VM size, we design another group of vertical
experiments. As Figure 5 illustrates, it is found that in the
same situation, i.e. with same running time, workload and
equal number of connections, the total transferred data of
ME2 tends to be constant which would have much more
obvious advantages than Xen’s pre-copy.

Suppose migrating a 1GB-SIZE VM, the time overhead
consists of the time of scanning buddy system, transferring
bitmap and RLE for memory copy. For the space overhead,
we only apply for 4MB as send-buffer in order to transfer
encoded memory in batches. And the bitmap size is only
32KB which is so small that it can be ignored. Also the time
of scanning and transferring bitmap is in nanosecond level,
so it has slight influence on downtime which is in

millisecond level. As to the RLE algorithm, it only scan
memory once and the memory transfer rate is much faster
than that of network bandwidth, it takes up little time, about
3.4% on average for various workloads.

V. CONCLUSIONS
In our ME2 system, the virtual machine’s useless

memory can be differentiated. As a result it can significantly
decrease total transferred memory. However, for further
reducing transferred data, RLE algorithm is utilized which
can quickly compress data and occupy little CPU time
compared with other complicated compression algorithms.
And also ME2 can combine with other migration methods,
e.g. trace and replay [6]. However, ME2 needs to write
Exploration Module for different Guest OS. In spite of this,
there are only a few prevailing server OS, such as Windows,
Unix, Linux and Netware. Therefore, it deserves us to
develop such module to improve 50% of the migration
traffic, total time and server’s SLA.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China(No. 61002011); the Open Fund of the
State Key Laboratory of Software Development
Environment(No. SKLSDE-2009KF-2-08); the 973 Program
of China(No. 2009CB320505);the 863 Program of
China(No.s 2011AA01A102).

REFERENCES
[1] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.

Pratt, and A. War�eld. “Live migration of virtual machines”. In Proc.
NSDI ’05.

[2] M. Nelson, B. Lim, and G. Hutchins. “Fast Transparent Migration for
Virtual Machines”. In Proc. USENIX ,2005.

[3] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg, “Live
wide-area migration of virtual machines including local persistent
state,” in Proceedings of the 3rd International Conference on Virtual
Execution Environment ,2007.

[4] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box
and gray-box strategies for virtual machine migration”, in
Proceedings of the 4th USENIX Symposium on Networked Systems
Design and Implementation ,2007.

[5] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proceedings of the
18th International Symposium on High Performance Distributed
Computing ,2009.

[6] Timothy Wood, Prashant Shenoy, K.K. Ramakrishnan , Jacobus Van
der Merwe, CloudNet: Dynamic Pooling of Cloud Resources by Live
WAN Migration of Virtual Machines, 2011.

[7] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, Xiaodong Pan. “Live
Virtual Machine Migration with Adaptive Memory Compression”, in
Cluster Computing and Workshops, CLUSTER 2009.

[8] Xiang Zhang, Zhigang Huo , Jie Ma, Dan Meng, “Exploiting Data
Deduplication to Accelerate Live Virtual Machine Migration”,
CLUSTER 2010.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. War�eld. “Xen and the art of
virtualization”. In Proc. SOSP’03.

Figure 4. The transferred data of each iteration compared with
Xen and ME2 running dynamic web (VM size: 1GB)

Figure 5. The transferred data of different VM size of Xen and
ME2 with workload static web

Figure 3. The downtime of ME2 compared with Xen running
various workloads (VM size: 1GB)

613

